Refine Your Search

Topic

Search Results

Journal Article

Cracking Failure Analysis and Optimization on Exhaust Manifold of Engine with CFD-FEA Coupling

2014-04-01
2014-01-1710
For fracture cracks that occurred in the tight coupling exhaust manifold durability test of a four-cylinder gasoline engine with EGR channel, causes and solutions for fracture failure were found with the help of CFD and FEA numerical simulations. Wall temperature and heat transfer coefficient of the exhaust manifold inside wall were first accurately obtained through the thermal-fluid coupling analysis, then thermal modal and thermoplastic analysis were acquired by using the finite element method, on account of the bolt pretightening force and the contact relationship between flange face and cylinder head. Results showed that the first-order natural frequency did not meet the design requirements, which was the main reason of fatigue fracture. However, when the first-order natural frequency was rising, the delta equivalent plastic strain was increasing quickly as well.
Journal Article

Study on the Unsteady Heat Transfer of Engine Exhaust Manifold Based on the Analysis Method of Serial

2014-04-01
2014-01-1711
In order to predict the thermal fatigue life of the internal combustion engine exhaust manifold effectively, it was necessary to accurately obtain the unsteady heat transfer process between hot streams and exhaust manifold all the time. This paper began with the establishment of unsteady coupled heat transfer model by using serial coupling method of CFD and FEA numerical simulations, then the bidirectional thermal coupling analysis between fluid and structure was realized, as a result, the difficulty that the transient thermal boundary conditions were applied to the solid boundary was solved. What's more, the specific coupling mode, the physical quantities delivery method on the coupling interface and the surface mesh match were studied. On this basis, the differences between strong coupling method and portioned treatment for solving steady thermal stress numerical analysis were compared, and a more convenient and rapid method for solving static thermal stress was found.
Journal Article

The Energy Management for Solar Powered Vehicle Parking Ventilation System

2015-04-14
2015-01-0149
In summer, when vehicle parks in direct sunlight, the closed cabin temperature would rise sharply, which affects the occupants step-in-car comfort Solar powered vehicle parking ventilation system adopts the solar energy to drive the original ventilator. Thus, the cabin temperature could be dramatically decreased and the riding comfort could be also improved. This research analyzed the modified crew cabin thermal transfer model. Then the performance of the solar powered ventilation system is analyzed and optimized combined with the power supply characteristics of the photovoltaic element. The storage and reuse of the solar power is achieved on condition that the cabin temperature could be steadily controlled. The research shows that, the internal temperature is mainly affected by the solar radiation intensity and the environment temperature.
Technical Paper

Styling Parameter Optimization of the Type C Recreational Vehicle Air Drag

2021-09-30
2021-01-5094
Recreational vehicles have a lot of potential consumers in China, especially the type C recreational vehicle is popular among consumers due to its advantages, prompting an increase in the production and sales volumes. The type C vehicle usually has a higher air drag than the common commercial vehicles due to its unique appearance. It can be reduced by optimizing the structural parameters, thus the energy consumed by the vehicle can be decreased. The external flow field of a recreational vehicle is analyzed by establishing its computational fluid dynamic (CFD) model. The characteristic of the RV’s external flow field is identified based on the simulation result. The approximation models of the vehicle roof parameters and air drag and vehicle volume are established by the response surface method (RSM). The vehicle roof parameters are optimized by multi-objective particle swarm optimization (MO-PSO).
Technical Paper

Decision Making and Trajectory Planning of Intelligent Vehicle’ s Lane-Changing Behavior on Highways under Multi-Objective Constrains

2020-04-14
2020-01-0124
Discretionary lane changing is commonly seen in highway driving. Intelligent vehicles are expected to change lanes discretionarily for better driving experience and higher traffic efficiency. This study proposed to optimize the decision-making and trajectory-planning process so that intelligent vehicles made lane changes not only with driving safety taken into account, but also with the goal to improve driving comfort as well as to meet the driver’ s expectation. The mechanism of how various factors contribute to the driver’s intention to change lanes was studied by carrying out a series of driving simulation experiments, and a Lane-Changing Intention Generation (LCIG) model based on Bi-directional Long Short-Term Memory (Bi-LSTM) was proposed.
Technical Paper

Research on the Performance of Battery Thermal Management System Based on Optimized Arrangement of Flat Plate Heat Pipes

2020-04-14
2020-01-0162
The thermal management system is essential for the safe and long-term operation of the power battery. The temperature difference between the individual cells exceeds the acceleration of the battery performance, which leads to battery out of use and affects the performance of the vehicle. Compared with the low heat transfer coefficient of the air-cooling system, the complex structure of the liquid-cooling system and the large quality of phase change material system, the heat pipe has high thermal conductivity, strong isothermal performance and light weight, it’s an efficient cooling element that can be used for thermal management. In this study, the flat plate heat pipe(FPHP) is used to manage the temperature of the battery, through experiments, the optimized placement of the flat heat pipe is obtained.
Technical Paper

Research on the Performance of Magnetorheological Fluid Auxiliary Braking Devices Thermal Management System Based on Flat Plate Heat Pipes

2020-04-14
2020-01-0894
To prevent braking recession, heavy commercial vehicles are often equipped with fluid auxiliary braking devices, such as hydraulic retarder. Hydraulic retarder can convert the vehicle’s kinetic energy to the fluid heat energy, which can enormously alleviate the main brake’s workload. The traditional hydraulic retarder can provide enough braking torque but has a delay during the braking. In this paper, a new type of magnetorheological fluid (MR fluid) hydraulic retarder is introduced by replacing the traditional fluid with magnetorheological fluid because of its linear braking torque and quick response. By changing the magnetic field intensity, it is easier to control the braking torque than the traditional hydraulic retarder. The rise of magnetorheological fluid temperature during the braking period will reduce the hydraulic retarder’s performance.
Technical Paper

Research on Objective Drivability Evaluation with Multi-Source Information Fusion for Passenger Car

2020-04-14
2020-01-1044
The drivability plays an important role for marketability and competitiveness of passenger car in meeting some customer requirements, which directly affects the driving experience and the desire of purchasing. In this paper, a framework of objective drivability evaluation with multi-source information fusion for passenger car is proposed. At first, according to vehicle powertrain system and optimization theory, certain vehicle performances, which are closely related to objective drivability are analyzed, including vehicle longitudinal acceleration, vehicle speed, engine torque, engine speed, gear position, accelerator pedal, brake signal and voltage signal. Then, combined with the evaluation criterion of signal-to-noise ratio (SNR), mean error (ME), root mean squared error (RMSE) and signal smoothness (SS), a de-noising method is developed for the drivability evaluation information.
Journal Article

Research on Driving Posture Comfort Based on Relation between Drivers' Joint Angles and Joint Torques

2014-04-01
2014-01-0460
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found.
Technical Paper

Automatic Parking Control Algorithms and Simulation Research Based on Fuzzy Controller

2020-04-14
2020-01-0135
With the increase of car ownership and the complex and crowded parking environment, it is difficult for drivers to complete the parking operation quickly and accurately, which may cause traffic accidents such as vehicle collisions and road jams because of poor parking skills. The emergence of an automatic parking system can help drivers park safely and reduce the occurrence of safety accidents. In this paper, the neural network identifier on the control method of an adaptive integral derivative of a neural network is proposed for an automatic parallel parking system with front-wheel steering is studied by using MATLAB/Simulink environment, and the simulation is carried out. Firstly, according to vehicle parameters and obstacle avoidance constraints, the minimum parking space, and parking starting position are calculated. Meanwhile, the path planning of parallel parking spaces is carried out by quintic polynomial.
Technical Paper

Analysis and Evaluation of the Urban Bus Driving Cycle on Fuel Economy

2007-07-23
2007-01-2073
On-road testing of driving performance of the urban bus was carried out, and a representative urban bus driving cycle was developed after on-road testing, according to the test results. Then, the vehicle simulation software AVL CRUISE was used to simulate the dynamic behavior of the urban bus. It involves the simulation of complete drive train system and the driver behavior. The model is validated by comparing the results of the simulation to the results of the field test. Then the developed driving cycle is evaluated by fuel consumption resulted from the simulation and engine bench test on fuel economy.
Technical Paper

Study about the Simulation of Vehicle-Pedestrian Collision and Protection

2007-08-05
2007-01-3594
Based on the multi-body system, the work research the injury index of the mathematics models of pedestrian, by simulating the motion of the pedestrian impacted by vehicle using MADYMO. Compared with the article published, verify the dependability of this simulated test. Based on the dependability, Carry on sensitivity analysis to design parameter of the automobile. Research on the pedestrian protection by the vehicle by revising the sensitive design parameter. By simulating the pedestrian impacted by the vehicle which installing the hood raise structure, search on the injury index. Compared with the original injury index, we can find that the hood raise structure be propitious to the pedestrian.
Technical Paper

Modeling and Simulation Research of Dual Clutch Transmission Based On Fuzzy Control

2007-08-05
2007-01-3754
Dual-Clutch-Transmission (DCT) is one kind new automatic transmission which has double clutch structure. The most important unit of DCT is Transmission-Control-Module (TCM).In the development process of TCM, simulation is an important research tools. We have analyzed the DCT principle of work, established its mathematical model, created the charge and discharge oil models of typical wet dual clutch transmission, established the control logic to unify and separate double clutch in turn, and also designed out the shift control using fuzzy control using MATLAB/Simulink software. Utilizing engine model, driver model, the DCT model, the TCM model, the vehicle model, established the vehicle simulation model, and implemented simulation; Result indicated that, the established model can correctly reflect the torque and speed change when shifted gears and can correctly realize the automatic shift gears.
Technical Paper

Strength Analysis and Modal Analysis of Hydraulic Retarder

2009-10-06
2009-01-2896
Hydraulic retarder is one of main auxiliary braking devices of the vehicle. When the vehicle is braking, a great pressure from high-speed fluid is received by hydraulic retarder blades. It is difficult to predict rational hydraulic retarder strength, owing to the complexity of the internal flow of oil. An optimal calculation way of hydraulic retarder strength is proposed based on CFD and FEA, concluding a reasonable result. The 3-D model of hydraulic retarder is built in the general CAD software. The model of fluid passage is extracted, according to the condition when the whole flow passage is filled with oil, and imported to CFD software. The inner flow field of hydraulic retarder is analyzed and the hydraulic surface pressure distribution of the hydraulic retarder blade is obtained at the highest rotary speed of turbine wheel.
Technical Paper

Avoiding Accelerating Incorrectly While Steering with CAN Networks

2004-03-08
2004-01-0200
People, vehicles and circumstances are the three key factors, which affect transportation systems. Offering more information to the driver and helping him observe on all sides so that he can make decisions correctly are of great importance for reducing accidents. According to the present traffic regulations, in this paper we focus on the rules and process used during steering and proposed to implement them in a car information central control system based on CAN. A comparison of the brake time between brake by driver and by radars revealed the great interest of using ECUs connected by CAN network.
Technical Paper

Energy Consumption of Passenger Compartment Auxiliary Cooling System Based on Peltier Effect

2017-03-28
2017-01-0155
The closed cabin temperature is anticipated to be cooled down when it is a bit hot inside the driving car. The traditional air-condition lowers the cabin temperature by frequently switching the status of the compressor, which increases the engine’s parasitic power and shortens the compressor’s service-life. The semiconductor auxiliary cooling system with the properties of no moving parts, high control precision and quick response has the potential to assist the on-board air-condition in modulating the cabin temperature with relative small ranges. Little temperature differences between the cabin and the outside environment means that the system energy consumption to ensure the occupant comfort is relatively low and the inefficiency could be made up by the renewable energy source.
Technical Paper

Color Variable Speed Limit Sign Visibility for the Freeway Exit Driving Safety

2017-03-28
2017-01-0085
Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
Technical Paper

Safe Travelling Speed of Commercial Vehicles on Curves Based on Vehicle-Road Collaboration

2017-03-28
2017-01-0080
Mountain road winding and bumpy, traffic accidents caused by speeding frequently happened, mainly concentrated on curves. The present curve warning system research are based on Charge-coupled Device, but the existing obstacles, weather , driving at night and road conditions directly affect the accuracy and applicability. The research is of predictability to identify the curves based on the geographic information and can told the driver road information and safety speed ahead of the road according to the commercial vehicle characteristic of load, and the characteristics of the mass center to reduce the incidence of accidents. In this paper, the main research contents include: to estimate forward bend curvature through the node classification method based on the digital map.
Technical Paper

The Research of the Adaptive Front Lighting System Based on GIS and GPS

2017-03-28
2017-01-0041
Automotive Front Lighting System(AFS) can receive the steering signal and the vehicular speed signal to adjust the position of headlamps automatically. AFS will provide drivers more information of front road to protect drivers safe when driving at night. AFS works when there is a steering signal input. However, drivers often need the front road's information before they turn the steering wheel when vehicles are going to go through a sharp corner, AFS will not work in such a situation. This paper studied how to optimize the working time of AFS based on GIS (Geographic Information System) and GPS(Geographic Information System) to solve the problem. This paper analyzed the process of the vehicle is about to go through a corner. Low beams and high beams were discussed respectively.
Technical Paper

Model-Based Pressure Control for an Electro Hydraulic Brake System on RCP Test Environment

2016-09-18
2016-01-1954
In this paper a new pressure control method of a modified accumulator-type Electro-hydraulic Braking System (EHB) is proposed. The system is composed of a hydraulic motor pump, an accumulator, an integrated master cylinder, a pedal feel simulator, valves and pipelines. Two pressurizing modes are switched between by-motor and by-accumulator to adapt different pressure boost demands. A differentiator filtering raw sensor signal and calculating pedal speed is designed. By using the pedal feel simulator, the relationship between wheel pressures and brake force is decoupled. The relationships among pedal displacement, pedal force and wheel pressure are calibrated by experiments. A model-based PI controller with predictor is designed to lower the influences caused by delay. Moreover, a self-tuning regulator is introduced to deal with the parameter’s time-varying caused by temperature, brake pads wearing and delay variation.
X