Refine Your Search

Topic

Search Results

Journal Article

Research on Driving Posture Comfort Based on Relation between Drivers' Joint Angles and Joint Torques

2014-04-01
2014-01-0460
Driving comfort is one of the most important indexes for automobile comfort. Driving posture comfort is closely related to the drivers' joint angles and joint torques. In present research, a new method is proposed to identify the most comfortable driving posture based on studying the relation between drivers' joint angles and joint torques. In order to truly reflect a driving situation, the accurate human driving model of 50 percent of the size of Chinese male is established according to the human body database of RAMSIS firstly. Biomechanical model based on accurate human driving model is also developed to analyze and obtain dynamic equations of human driving model by employing Kane method. The joint torque-angle curves of drivers' upper and lower limbs during holding wheel or pedal operation can be obtained through dynamic simulation in the MATLAB. Through curve-fitting analysis, the minimum joint torque of a driver' limb and the optimal joint angel can be found.
Technical Paper

Study on EP Energy-Saving Vehicle

2008-06-23
2008-01-1775
The price of fossil fuels and the increasing inexorable energy crisis have become vital issues for everyone. Tongji University EconoPower Racing Team was established to participate in the “Honda EconoPower Cup” annually. Every contestant in the competition must finish a certain distance in the fixed time, with the gasoline supplied by the committee. After that the committee will measure the fuel consumption of every team and calculate the distance per liter fuel (the farther the better) to determine the champion. In order to enhance the EP vehicle's achievement we've made some improvements, such as framework, body, engine's optimization and so on. In this passage we mainly state some details of our research approaches in framework, steering, transmission, shape and driving strategy. The main technologies were: friction reduction, lightweight, enhancement of power train efficiency, tire selection and driving strategy.
Technical Paper

Fuzzy Control of Semi-active Air Suspension for Cab Based on Genetic Algorithms

2008-10-07
2008-01-2681
Semi-active suspension has been widely applied in commercial vehicle suspension in order to get good riding comfortableness. Fuzzy logic control (FLC) has been widely applied in the field of kinetic control because control rule of FLC is easy to understand. But the gain of fuzzy rules and adjustment of membership functions usually depend on experts' experiences and repeated experiments, thus the fuzzy rules and membership functions has strong subjectivity, also are easily affected by environment of experiments, so the main problem of fuzzy logic controller design is selection and optimization of fuzzy rules and membership functions. Genetic Algorithms (GA) is the algorithm that searches the optimal solution through simulating natural evolutionary process and is one of the evolution algorithms which have most extensive impact.
Technical Paper

Strength Analysis and Modal Analysis of Hydraulic Retarder

2009-10-06
2009-01-2896
Hydraulic retarder is one of main auxiliary braking devices of the vehicle. When the vehicle is braking, a great pressure from high-speed fluid is received by hydraulic retarder blades. It is difficult to predict rational hydraulic retarder strength, owing to the complexity of the internal flow of oil. An optimal calculation way of hydraulic retarder strength is proposed based on CFD and FEA, concluding a reasonable result. The 3-D model of hydraulic retarder is built in the general CAD software. The model of fluid passage is extracted, according to the condition when the whole flow passage is filled with oil, and imported to CFD software. The inner flow field of hydraulic retarder is analyzed and the hydraulic surface pressure distribution of the hydraulic retarder blade is obtained at the highest rotary speed of turbine wheel.
Technical Paper

Co-simulation Based Hydraulic Retarder Braking Control System

2009-10-06
2009-01-2907
Hydraulic retarder has been widely applied on military vehicles and heavy commercial vehicles because of it could provide great brake torque and has lasting working time [1]. In order to reduce driver's frequent actions in braking process and prevent hydraulic retarder system from overheating, it is need to apply constant braking torque control, this control target has a strict requirement to hydraulic control system design. Many parameters often require repeated test to determine, which increases the R&D cost and extends the research cycle. This paper tries to find a time-efficient research method of hydraulic retarder control system through studying on a heavy military vehicle hydraulic retarder system. Hydraulic retarder model is set up through test data. The hydraulic control system is built based on AMESim. Controller model is set up based on PID control. The whole vehicle brake model is built based on MATLAB/Simulink.
Technical Paper

Vehicle Stability Criterion Research Based on Phase Plane Method

2017-03-28
2017-01-1560
In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
Technical Paper

Development and Test of ESC Controller with Driver-In-the-Loop Platform

2017-09-23
2017-01-1993
This paper presents a Driver-In-the-Loop (DIL) bench test system for development of ESC controller. The real-time platform is built-up based on NI/PXI system and the real steering/throttle/braking actuator. In addition, the CarSim provides the vehicle model and the animator for virtual driving environment. A hierarchical ESC controller is proposed in MATLAB/Simulink then download into PXI. In the upper motion controller, the sliding mode theory is adopted and the logic threshold algorithm is used in the lower slip controller. Finally, ESC test is implemented under typical conditions by DIL and Model-In-the-Loop (MIL). The results show that, DIL could make up the shortage of driver model which can’t accurately simulate the emergency response of real driver. Therefore, DIL test could verify the ESC controller more accurately and effectively with considering the human-vehicle-road environment.
Technical Paper

A Method of Acceleration Order Extraction for Active Engine Mount

2017-03-28
2017-01-1059
The active engine mount (AEM) is developed in automotive industry to improve overall NVH performance. The AEM is designed to reduce major-order signals of engine vibration over a broad frequency range, therefore it is of vital importance to extract major-order signals from vibration before the actuator of the AEM works. This work focuses on a method of real-time extraction of the major-order acceleration signals at the passive side of the AEM. Firstly, the transient engine speed is tracked and calculated, from which the FFT method with a constant sampling rate is used to identify the time-related frequencies as the fundamental frequencies. Then the major-order signals in frequency domain are computed according to the certain multiple relation of the fundamental frequencies. After that, the major-order signals can be reconstructed in time domain, which are proved accurate through offline simulation, compared with the given signals.
Technical Paper

Study on the Effect of Inverter Modulation Methods and Operating Condition on Common Mode EMI for Motor Drive System

2017-03-28
2017-01-1223
There are many electronic devices in electric vehicle (EV), making its electromagnetic compatibility (EMC) serious. Motor drive system is the main interference source of EV, whose electromagnetic interference (EMI) is much worse than conventional vehicle. In this paper, the motor drive system of EV was mainly researched, and a co-simulation method was proposed: control system and motor model were established with Matlab, and the equivalent circuit model of inverter and the cable model were established with Saber. By this way, a complete motor drive system model for conductive EMI was obtained. This modeling method can not only accurately establish the EMI sources and coupling paths, but can simulate the control strategy and operating conditions.
Technical Paper

Design and Control of a Novel Geared Electromagnetic Active Suspension

2016-04-05
2016-01-1554
A novel geared electromagnetic active suspension is proposed in this paper. A pushing rod and a rocker are introduced to transfer the suspension vertical motion to the rotational motion of the motor. Comparing with the common ball-screw active suspension, it presents advantages of simple structure, easy manufacturing and module design. As the state variables of the suspension system cannot be all obtained for the sake of cost, taking the suspension deflection as the measurement, an output feedback LQR optimal controller is adopted, and it is concluded that the system can be stable with damping. Considering the nonlinearity of equivalent stiffness and unsprung mass caused by the system structure, parameter perturbation ranges are concluded through dynamic analysis, and robust H∞ control algorithm is proposed to realize the multi-objective optimization.
Technical Paper

Multidisciplinary Design Optimization of a Hatchback Structure

2012-04-16
2012-01-0780
Lightweight automobile has an important role in saving the energy, improving the fuel economy and reducing the exhaust emission. However, reducing the mass of the automobile need to meet the structural and NVH (Noise, Vibration and Harshness) performance requirements. With the rapid development of Computer Aided Engineering (CAE) technology, more and more people tend to research the complex engineering application problem by computer simulation. An important challenge in today's simulation is the Multidisciplinary Design Optimization (MDO) of an automobile, including mass, stiffness and modal etc. This paper presents a MDO study in a minicar hatchback.
Technical Paper

Experiment Study and Design of Self-excited Eddy Current Retarder

2013-11-27
2013-01-2825
Good braking performance is an important guarantee for the vehicle driving. In the condition of frequent or prolonged braking, the overheating problem for the traditional mechanical braking device causes the recession of the braking performance, which is a prominent problem especially for the commercial vehicle perennial traveling in the mountains. Eddy current retarder can reduce the mechanical brake load as a kind of auxiliary braking device. Thus, the temperature of the mechanical braking device would not be too high, and the traveling safety of the vehicle can be ensured. But eddy current retarder would cause an enormous impact for automobile battery when it starts up and huge electricity energy would be consumed which means that more automotive batteries are needed. Considering above, a kind of self-excited eddy current retarder is developed in the paper.
Technical Paper

The Design and Realization of Steam Turbine Blade CAD/CAM System

2021-04-06
2021-01-0816
The turbine blade is a key component in the operation of the steam turbine hence the design and manufacturing level of the blade will directly affect the performance and efficiency of the turbine. CAD/CAM has been the foundation and important part of advanced manufacturing technology. It is important to study the steam turbine blade integrated CAD/CAM system to improve the design and manufacture of the blade. In this paper, the structure of CAD/CAM system for steam turbine blade is studied and the extensible framework structure including user layer, functional layer and system layer is proposed. Based on the control points of the turbine blade profile design method, and based on the expression between the three-dimensional parametric vector modeling method in UG-based platform, the use of UG/Open development tools and Visual C # developed a turbine blade CAD system.
Technical Paper

Energy-Harvesting Potential and Vehicle Dynamics Conflict Analysis under Harmonic and Random Road Excitations

2018-04-03
2018-01-0568
Energy has the worldwide concern since the World War. Recently, the energy harvesting technology has got more attraction in different fields and applications. Hence, in a world where energy becomes rare and expensive, even the small quantities are worth to be harvested where it can be exploited in different applications. Vehicle suspension is one of the vibration power dissipation sources in which the undesired vibration is dissipated into heat waste. Accordingly, the principal motivation of this study is exploitation the conflict between the potentially harvested power and vehicle dynamics in automotive suspension system induced by road irregularity. Therefore, in terms of RMS conflict diagrams, the conflict between the potential power and vehicle dynamics are sufficiently and comprehensively defined considering a vehicle speed of 20 m/s.
Technical Paper

Model Based CAE Technology for the Development of Automotive Embedded Distributed Control System

2005-02-01
2005-01-3133
Automotive embedded DCS is widely used to solve automotive control problems. This paper presents a model-driven development technology for such systems. Models of automotive embedded DCS are built up strictly complying with the four-layer-model architecture, which is presented by Model-Driven Architecture (MDA). Three kinds of models are used to describe the protocol data structure, the algorithm process and visualization aspects of automotive embedded DCS. Corresponding XML databases are created based upon these models. As a single data source, these databases play key roles in further development phases, including generating the protocol specification, MC&D systems and embedded programming, etc. Some demonstrative applications are presented in this paper.
Technical Paper

Multi-objective Combination Optimization of Automobile Subframe Dynamic Stiffness

2023-04-11
2023-01-0005
Subframe is an important part of automobile chassis, which is connected with body, suspension control arm, powertrain mount, etc. The dynamic stiffness value of the connection point is an important performance index of the subframe, which affects the vibration of the vehicle body. This paper introduces the basic concept and related theory of dynamic stiffness, derives the theoretical formula of dynamic stiffness, and analyzes the frequency response of the key points of the subframe. In view of the fact that the dynamic stiffness of the subframe of a certain vehicle model is not up to the standard at some connection points, the dynamic stiffness CAE simulation analysis is carried out to determine the frequency range of insufficient dynamic stiffness and the connection points that need to be optimized.
Technical Paper

Optimal Design of Vehicle Dash and Floor Sound Package Based on Statistical Energy Analysis

2015-04-14
2015-01-0661
An increasing demand for vehicle noise control has been proposed and at the same time, vehicle weight and fuel economy have become critical for the automotive industry. The methodology of statistical energy analysis (SEA) is used to balance both light weight and high noise insulation performance. In this paper, the vehicle dash and floor sound package systems, which are two of the major paths for vehicle interior noise, are studied and optimized by CAE and testing technology. Two types of sound packages which are the conventional insulation system and the lightweight one are chosen for the vehicle dash and floor system. The vehicle dash and floor systems are modeled by SEA and the transmission loss (TL) of the dash and floor system is analyzed, respectively. Several influence factors of the TL are also analyzed, such as sound package coverage, the leaks, etc.
Technical Paper

Parameters Analyses and Identification for Rubber Bush Based on Theoretical Dynamic Model with Effects of Temperature and Preload

2019-04-02
2019-01-1272
A series connection of the KVBC (Kelvin-Voigt and Bouc-wen) theoretical model of rubber bush in automobile suspension is established. The numerical calculation model is also developed through Matlab/simulation and 9 parameters are identified. Experiments are conducted on the rubber bush on a bench for dynamic and static characteristics and to supply appropriate and reliable data for parameter identification. Based on this, preload and temperature are taken into consideration in an ordinary KVBC model as two important additional factors. As a result, it leads to developing a novel model with new parameter identification, which is validated under different conditions. This new modeling method of rubber bush has three advantages. First, it shows improved accuracy for solving non-linear problems in a multi-body calculation, which is useful for researchers and vehicle engineers.
Technical Paper

Passenger Cabin’s Parking Cooling System Based on TEC and Air Conditioning Condensate Water

2019-04-02
2019-01-1066
In the passenger cabin of the parking under the summer sun, the air’s average temperature will reach about 60°C. Such temperature can cause discomfort to the person who has just entered the passenger cabin, also can damage components of the passenger cabin. The reason for this phenomenon is because it is not convective with the outside air. Some vehicles use the electric power to drive the blower in order to ventilate, but the air’s temperature of cabin is so high that the blower’s effect of ventilation is limited. The system proposes to use solar energy to drive the automobile blower and the thermoelectric cooler(TEC) in order to cool the cabin’s air, and use the air-conditioning condensate water collected during the driving process to cool the TEC’s hot end to improve the cooling efficiency.
Technical Paper

The Combined Braking Energy Management Strategy to Maximize Energy Recovery

2016-04-05
2016-01-0453
Eddy current retarder (ECR) shares a large market of auxiliary brakes in China, but shortcomings of the short continuous braking time and the high additional energy consumption are also obvious. The propose of combined braking partakes the braking torque of ECR. However, the existed serial-parallel braking strategy could hardly balance well the relationship between the braking stability and the energy recovery efficiency. This research puts forward an energy management strategy of combined braking system which aims to maximize energy recovery while ensure the brake stability. The motor speed, the braking request and the state of charge (SoC) of the storage module are analyzed synthetically to calculate the reasonable braking torque distribution proportion. And the recovered energy is priority for using in the braking unit to reduce the additional energy consumption in this strategy.
X