Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Styling Parameter Optimization of the Type C Recreational Vehicle Air Drag

2021-09-30
2021-01-5094
Recreational vehicles have a lot of potential consumers in China, especially the type C recreational vehicle is popular among consumers due to its advantages, prompting an increase in the production and sales volumes. The type C vehicle usually has a higher air drag than the common commercial vehicles due to its unique appearance. It can be reduced by optimizing the structural parameters, thus the energy consumed by the vehicle can be decreased. The external flow field of a recreational vehicle is analyzed by establishing its computational fluid dynamic (CFD) model. The characteristic of the RV’s external flow field is identified based on the simulation result. The approximation models of the vehicle roof parameters and air drag and vehicle volume are established by the response surface method (RSM). The vehicle roof parameters are optimized by multi-objective particle swarm optimization (MO-PSO).
Technical Paper

Parameter Optimization of Off-Road Vehicle Frame Based on Sensitivity Analysis, Radial Basis Function Neural Network, and Elitist Non-dominated Sorting Genetic Algorithm

2021-08-10
2021-01-5082
The lightweight design of a vehicle can save manufacturing costs and reduce greenhouse gas emissions. For the off-road vehicle and truck, the chassis frame is the most important load-bearing assembly of the separate frame construction vehicle. The frame is one of the most assemblies with great potential to be lightweight optimized. However, most of the vehicle components are mounted on the frame, such as the engine, transmission, suspension, steering system, radiator, and vehicle body. Therefore, boundaries and constraints should be taken into consideration during the optimal process. The finite element (FE) model is widely used to simulate and assess the frame performance. The performance of the frame is determined by the design parameters. As one of the largest components of the vehicle, it has a lot of parameters. To improve the optimum efficiency, sensitivity analysis is used to narrow the range of the variables.
Journal Article

Study on Engine Hood with Negative Poisson's Ratio Architected Composites Based on Pedestrian Protection

2017-03-28
2017-01-0368
The conventional hood with single material and stiffener structural form conceals some limitations on pedestrian protection and lightweight, not satisfying the requirements of structural strength, pedestrian protection and lightweight contradictory with each other at the same time. In this paper, a novel type hood is proposed to develop sandwich structure using architected cellular material with negative Poisson's ratio (NPR) configuration based on the decoupling thought of structural strength and energy absorption. Core-layer aluminum alloy material with NPR is used to meet the requirement of impact energy absorption, inner and outer skin using carbon fiber is selected to achieve high structural stiffness needed. This paper starts from the relations between geometric parameters of core-layer architected cellular material and mechanical properties, on this basis, the optimal geometric parameters can be expected using the multiobjective optimization method.
Technical Paper

Study about the Simulation of Vehicle-Pedestrian Collision and Protection

2007-08-05
2007-01-3594
Based on the multi-body system, the work research the injury index of the mathematics models of pedestrian, by simulating the motion of the pedestrian impacted by vehicle using MADYMO. Compared with the article published, verify the dependability of this simulated test. Based on the dependability, Carry on sensitivity analysis to design parameter of the automobile. Research on the pedestrian protection by the vehicle by revising the sensitive design parameter. By simulating the pedestrian impacted by the vehicle which installing the hood raise structure, search on the injury index. Compared with the original injury index, we can find that the hood raise structure be propitious to the pedestrian.
Technical Paper

The Application of Superelement Modeling Method in Vehicle Body Dynamics Simulation

2016-09-27
2016-01-8050
In this paper, we propose a method of dynamics simulation and analysis based on superelement modeling to increase the efficiency of dynamics simulation for vehicle body structure. Using this method, a certain multi-purpose vehicle (MPV) body structure was divided into several subsystems, and the modal parameters and frequency response functions of which were obtained through superelement condensation, residual structure solution, and superelement data restoration. The study shows that compared to the traditional modeling method, the computational time for vehicle body modal analysis can be reduced by 6.9% without reducing accuracy; for the purpose of structural optimization, the computational time can be reduced by 87.7% for frequency response analyses of optimizations; consistency between simulation and testing can be achieved on peak frequency points and general trends for the vibration frequency responses of interior front row floors under accelerating conditions.
Technical Paper

The Topology Optimization Analysis on Rope-Wheel Glass Lifter

2016-04-05
2016-01-1384
Glass lifter is a key part of automobile door system. Guide rail is the carrier of glass lifter, and it bears various load cases when glass lifer works. Mass, stiffness and natural frequencies are the factors that influence the performance of glass lifter. In order to design a lighter and reasonable glass lifter, topology optimization methods are studied in this paper. In a rope-wheel glass lifter, design domain is determined by the mechanical structure and working conditions. Firstly, the single target continuum structure topology optimization mathematic models of guide rail are built in this paper, and analysis of multi-stiffness topology optimization are carried out accordingly in which volume fraction is set as 0.4, 0.5 and 0.6. These models are based on SIMP (Solid Isotropic Material with Penalization) theory.
Technical Paper

Optimization of Bus Body Based on Vehicle Interior Vibration

2012-04-16
2012-01-0221
In order to solve the abnormal vibration of a light bus, order tracking analysis of finite element simulation and road test was made to identify the vibration source, finding that the rotation angular frequency of the wheels and the first two natural frequency of the body structure overlaps, resonance occurring which lead to increased vibration. To stagger the first two natural frequency and excitation frequency of the body, thickness of sheet metal and skeleton of the body-in-white were chosen as the design variables, rise of the first two natural frequency of the body-in-white as the optimization objective, optimal design and sensitivity analysis of the body-in-white was carried out with the modal analysis theory. Combining with the modal sensitivity and mass sensitivity of sheet metal and skeleton, the optimum design was achieved and tests analysis was conducted.
Technical Paper

Vehicle Feature Recognition Method Based on Image Semantic Segmentation

2022-03-29
2022-01-0144
In the process of truck overload and over-limit detection, it is necessary to detect the characteristics of the vehicle's size, type, and wheel number. In addition, in some vehicle vision-based load recognition systems, the vehicle load can be calculated by detecting the vibration frequency of specific parts of the vehicle or the change in the length of the suspension during the vehicle's forward process. Therefore, it is essential to quickly and accurately identify vehicle features through the camera. This paper proposes a vehicle feature recognition method based on image semantic segmentation and Python, which can identify the length, height, number of wheels and vibration frequency at specific parts of the vehicle based on the vehicle driving video captured by the roadside camera.
Technical Paper

Multi-Objective Optimization of Interior Noise of an Automotive Body Based on Different Surrogate Models and NSGA-II

2018-04-03
2018-01-0146
This paper studies a multi-objective optimization design of interior noise for an automotive body. An acoustic-structure coupled model with materials and properties was established to predict the interior noise based on a passenger car. Moreover, three kinds of approximation models related damping thickness and the root mean square of the driver’s ear sound pressure level were established through Latin hypercube method and the corresponding experiments. The prediction accuracy was analyzed and compared for the approximate response surface model, Kriging model and Radial Basis Function neural network model. On this basis, multi-objective optimization of the vehicle interior noise was conducted by using NSGA-II. According to the optimization results, the damping composite structure was applied on the car body structure. Then, the comparison of sound pressure level response at driver’s ear location before and after optimization was performed at speed of 60 km/h on a smooth road.
Technical Paper

Application of Wavelet Analysis in Truck Cab Vibration Signal Processing

2012-09-24
2012-01-2011
The basic principle of wavelet transform is presented and the method of wavelet theory is used in vibration signal analysis of vehicle in this paper. The vibration signals which generated in the locations such as cab floor, engine, transmission, band spring and frame under the usual work condition are measured by the vibration test system. The vibration signals are decomposed with the principle of wavelet decomposition at level six, and eigenvectors of signal energy are gained. According to the correlation coefficient of eigenvectors of signal energy distribution, two signals correlativity is determined. It could be an effective method that identificate the main vibration source.
Technical Paper

Lane Detection and Pixel-Level Tracking for Autonomous Vehicles

2022-03-29
2022-01-0077
Lane detection and tracking play a key role in autonomous driving, not only in the LKA System but help estimate the pose of the vehicle. While there has been significant development in recent years, traditional outdoor SLAM algorithms still struggle to provide reliable information in challenging dynamic environments such as lack of roadside landscape or surrounding vehicles at almost the same speed or on the road in the woods. On the structured road, lane markings as static semantic features may provide a stable landmark assist in robust localization. As most of the current lane detection work mainly on separated images ignoring the relationship between adjacent frames, we propose a pixel-level lane tracking method for autonomous vehicles. In this paper, we introduce a deep network to detect and track lane features. The network has two parallel branches. One branch detects the lane position, while the other extracts the point description on a pixel level.
Technical Paper

Simulation Analysis and Experimental Study of Baja Racing Car Frame Based on Special Working Conditions

2023-04-11
2023-01-0812
As an off-road racing car, driving conditions for a Baja racing car are particularly complex. Extreme working conditions such as deep pits and rocky roads have put higher demand on structural strength and frame safety. To solve this problem, extreme working conditions are first studied to check the safety of the steel tube frame of Baja racing cars. Secondly, based on Noise, Vibration, and Harshness (NVH) to explore the frame's characteristics, analyze the frame's six-order mode, make the corresponding optimization, and solve the resonance problem caused by engine excitation and other factors. Finally, the natural frequency of the frame is measured to verify the effectiveness of the NVH characteristic optimization results, and it is found that the experimental results match the theoretical values. The theoretical analysis results are mainly based on ANSYS software's static and modal analysis.
Technical Paper

Material and Bonding Conditions Optimization of Monocoque Inserts Based on Formula Student Electric China

2023-04-11
2023-01-0808
In the Formula Student Electric China (FSEC), the body structure is generally divided into two types, truss steel tube body and carbon fiber load-bearing body (monocoque). The monocoque is loved by Formula Student teams around the world because it has a higher stiffness and lighter weight than the truss steel tube body. With the widespread application of monocoque, it also brings more problems. Due to the use of the monocoque, the connection between each component and the body was changed from the welding of the original truss steel pipe frame to a bolted connection. However, the bolted connection will provide a large preload force to the monocoque, resulting in the monocoque easily crushed in the local, so it is necessary to pre-bury an enhanced part in the monocoque to ensure the connection strength, that is, the embedded part. At present, aluminum plug-ins after topological hollow processing are being used.
Technical Paper

The Finite Element Analysis and Optimization on a Special Vehicle

2015-04-14
2015-01-0473
According to the resonant pavement crusher's work principle, its front frame mounted with the resonance system must meet the needs of the structural requirements. To satisfy the strength and stiffness requirement and avoid the resonance, the natural frequency of the front frame should be designed away from the crusher's working frequency. In this paper, the author builds a finite element model of the front frame and analyses its modal. According to the modal analysis results, the fourth modal frequency is close to the working frequency of the crusher. So the front frame should be optimized. In the finite element model, the front frame has been divided into a number of components of shell elements. Through optimal Latin hypercube experimental design, the author analyses the different component thickness's relationship of the frequencies of the front frame. The components with higher correlation coefficient have been chosen as the variables of optimization.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Technical Paper

Research on Torsional Characteristic of Separate Frame Construction for a Light Off-Road Vehicle

2015-03-10
2015-01-0014
A key problem of designing a light off-road vehicle with separate frame construction is to improve its torsional characteristic, which has a significant influence on the performance of the vehicle. Inevitably, a certain distortion of the body would be produced by the vibration and impact passing from the road. In present research, an analysis model of light off-road vehicle is established based on the theories and methods of finite element (FEM). The static stiffness of the body is simulated and the deformation of openings on the body, mainly the windows and the doors of the vehicle is studied. On the working conditions of torsion and braking combination, torsion and cornering combination, diagonal dangling, ultimate torsion of unilateral wheels and diagonal wheels, the static strength of separate frame construction is studied as well. The stress concentration regions are obtained according to the results of simulation.
Technical Paper

SUV Solar Roof with Photo-Thermal Effect for Ventilation ORC System

2016-04-05
2016-01-0240
The Organic Rankine Cycle System (ORC) is an effective means to use the solar energy. The system adopts the solar energy on the car roof as the heat source to make the ORC work and drive the thermoelectric air-conditioner. It can improve the entering comfort on the parking condition and the vehicle energy utilization efficiency. In this research, the system comprehensively applied the principle of sunshine concentration, heat collection and photo electricity. Then considering the working condition and performance features of ORC system, the car roof was designed to have a compact structure, through which the efficiency of the solar vehicle system could be improved. Firstly, the research analyzed the heat source temperature and the heat flux impact on the output power of the ORC system. After that, the performance of heat collection was identified according to the given thermoelectric air-condition’s power requirements.
Technical Paper

High-Precision Autonomous Parking Localization System based on Multi-Sensor Fusion

2024-04-09
2024-01-2843
This paper addresses the issues of long-term signal loss in localization and cumulative drift in SLAM-based online mapping and localization in autonomous valet parking scenarios. A GPS, INS, and SLAM fusion localization framework is proposed, enabling centimeter-level localization with wide scene adaptability at multiple scales. The framework leverages the coupling of LiDAR and Inertial Measurement Unit (IMU) to create a point cloud map within the parking environment. The IMU pre-integration information is used to provide rough pose estimation for point cloud frames, and distortion correction, line and plane feature extraction are performed for pose estimation. The map is optimized and aligned with a global coordinate system during the mapping process, while a visual Bag-of-Words model is built to remove dynamic features.
X