Refine Your Search

Topic

Search Results

Standard

AIRCRAFT LANDING GEAR

1995-01-01
HISTORICAL
ARP1311A
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes) for all types and models of civil and military aircraft applications. All axles, wheel forks, axle beams, links, arms, mechanical and air-oil energy absorbers braces, lock assemblies, trunnion beams, etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure should be designed in accordance with this document. Hydraulic actuators (retraction, steering, positioning, and/or damping) should also be included in this coverage. It should be the responsibility of the airframe manufacturer to determine the compatibility of these needs with the aircraft and to specify requirements in excess of these minima where appropriate.
Standard

Aircraft Landing Gear

1999-06-01
HISTORICAL
ARP1311B
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes) for all types and models of civil and military aircraft including all aircraft with vertical landing and crash attenuation requirements. All axles, wheel forks, axle beams, links, arms, mechanical and nitrogen/oil energy absorbers, lock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, and/or damping) should also be included in this coverage.
Standard

Landing Gear Structures and Mechanisms

1979-03-01
HISTORICAL
ARP1311
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes and other landing gear systems) for all types and models of civil and military aircraft. All axles, wheel forks, links, arms, mechanical and gas/oil energy absorbers, downlock and uplock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed and validated in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, damping, etc.) should also be included in this coverage. System level, non structural components such as retraction/extension valves, controllers, secondary structure and mechanisms in the airframe (e.g. manual release mechansims, slaved doors) as well as equipment that is located in the cockpit is not addressed in this ARP.
Standard

Landing Gear Structures and Mechanisms

2018-06-03
CURRENT
ARP1311D
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes and other landing gear systems) for all types and models of civil and military aircraft. All axles, wheel forks, links, arms, mechanical and gas/oil shock struts, downlock and uplock assemblies, braces, trunnion beams, and truck beams, etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed and validated in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, damping, etc.) should also be included in this coverage. System level, non-structural components such as retraction/extension valves, controllers, secondary structure and mechanisms in the airframe (e.g., manual release mechanisms, slaved doors) as well as equipment that is located in the cockpit are not addressed in this ARP.
Standard

Landing Gear Structures and Mechanisms

2009-02-04
HISTORICAL
ARP1311C
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes and other landing gear systems) for all types and models of civil and military aircraft. All axles, wheel forks, links, arms, mechanical and gas/oil shock struts, downlock and uplock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed and validated in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, damping, etc.) should also be included in this coverage. System level, non-structural components such as retraction/extension valves, controllers, secondary structure and mechanisms in the airframe (e.g., manual release mechanisms, slaved doors) as well as equipment that is located in the cockpit are not addressed in this ARP.
Standard

Specification for Landing Gear Shock Strut Hydraulic Fluid With Additives

2016-03-14
WIP
AS6409
Provide specifications for hydraulic fluids used in landing gear shock struts. Some of this information was previously in AIR5358 however specifications should be in an AS. This new document will contain the appropriate specifications for premixed hydraulic fluid with additives believed to improve fluid performance and reduce friction.
Standard

Tests, Impact, Shock Absorber Landing Gear, Aircraft

2001-05-01
HISTORICAL
AS6053
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
Standard

Tests, Impact, Shock Absorber Landing Gear, Aircraft

2012-10-03
CURRENT
AS6053A
This specification covers definition of landing impact tests which are to be conducted on landing gear assemblies including shock absorbers, suggested instrumentation for the tests and required data of the resulting test report. It is intended to standardize impact test procedures on landing gear shock absorbers and to provide sufficient data to allow evaluation of the design with respect to requirements of MIL-L-8552 and MIL-S-8959 as applicable.
Standard

Gland Design: Scraper, Landing Gear, Installation

2001-04-01
HISTORICAL
AS4052A
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general-purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Gland Design: Scraper, Landing Gear, Installation

2008-11-24
CURRENT
AS4052B
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from urethane or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Tail Bumpers for Piloted Aircraft

2017-07-14
CURRENT
ARP1107C
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Tail Bumpers for Piloted Aircraft

2001-10-01
HISTORICAL
ARP1107B
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

TAIL BUMPERS FOR PILOTED AIRCRAFT

1991-06-11
HISTORICAL
ARP1107A
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

TAIL BUMPERS FOR PILOTED AIRCRAFT

1971-07-01
HISTORICAL
ARP1107
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Landing Gear Retraction / Extension Systems

2008-05-14
WIP
ARP5569
This Aerospace Recommended Practice (ARP) will cover normal and emergency landing gear retraction/extension systems. This includes all equipment necessary for the control and sensing of the components used for raising and lowering the gear, up-locking and down-locking the gear, opening and closing the associated landing gear doors, and any latching of this equipment. The document will provide recommended practices for the use of conventional technologies and for those newer technologies now coming into use. It will include the regulatory and other safety requirements for these systems together with recommendations for; sequencing and timing, sensor selection, and failure monitoring of both normal and emergency operation and the support of maintenance and test needs.
Standard

Landing Gear Shock Absorption Testing of Civil Aircraft

2013-04-20
CURRENT
ARP5644
The intent of this document is to provide recommended practices for conducting shock absorption testing of civil aircraft landing gear equipped with oleo-pneumatic shock absorbers. The primary focus is for Part 25 aircraft, but differences for Part 23, 27, and 29 aircraft are provided where appropriate.
Standard

Landing Gear Servicing

2008-03-25
HISTORICAL
ARP5908
The present document addresses gas and hydraulic fluid servicing required on commercial and military aircraft landing gears, for both single and dual chamber shock struts.
Standard

Landing Gear Servicing

2018-07-03
CURRENT
ARP5908A
The present document addresses gas and hydraulic fluid servicing required on commercial and military aircraft landing gears, for both single and dual chamber (also known as dual stage and two stage) shock struts. This document should be considered as landing gear industry recommended practice but in no way is meant to supersede the shock strut OEM’s published procedures.
X