Refine Your Search

Topic

Search Results

Standard

Information Guide for Electric Motors which Drive Hydraulic Pumps

2016-04-25
WIP
AIR6855
This document provides an application guide for electric motors that drive aerospace hydraulic pumps. It provides details of the characteristics of electric motors powered by DC, Fixed Frequency AC, and Variable Frequency AC electrical systems. The applications include both military and commercial aircraft.
Standard

Aircraft Hydraulic Starter/Pumps

2013-10-28
CURRENT
AS838A
This specification established (1) the common requirements for hydraulic units capable of functioning as starters and as pumps suitable for use in aircraft and missiles and (2) the methods to be used for demonstrating compliance with these requirements.
Standard

Aircraft Hydraulic Starter/Pumps

2005-04-26
HISTORICAL
AS838
This specification established (1) the common requirements for hydraulic units capable of functioning as starters and as pumps suitable for use in aircraft and missiles and (2) the methods to be used for demonstrating compliance with these requirements.
Standard

Compressor Units, Air/Gas, General Requirements For

2008-04-09
HISTORICAL
AS26805A
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Compressor Units, Air/Gas, General Requirements For

2001-03-01
HISTORICAL
AS26805
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Compressor Units, Air/Gas, General Requirements For

2013-06-13
CURRENT
AS26805B
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Hydraulic Pump Minimum Inlet Pressure Test

2020-12-10
CURRENT
ARP6249
This SAE Aerospace Recommended Practice (ARP) contains technical information for conducting and evaluating the minimum inlet pressure capability of axial piston pumps.
Standard

Aerospace – Military Type Variable Delivery, Pressure Compensated Hydraulic Pump

2022-05-18
WIP
AS19692C
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance, and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps used in military aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS. The hydraulic pumps defined by this AS are generally for use in aircraft hydraulic systems conforming to and as defined in AS5440 and MIL-H-8891, as applicable. NOTES: 1. Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard. 2. AS595 should be used for commercial aircraft hydraulic pumps. 3. This document should not be used for hydraulic pumps in Electro-Hydrostatic Actuator applications (EHAs).
Standard

PUMPS, HYDRAULIC, VARIABLE FLOW, GENERAL SPECIFICATION FOR

1998-05-01
HISTORICAL
AS19692
This specification and a detail pump specification establish the requirements for variable flow hydraulic pumps, for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891, as applicable. The general requirements for type I and type II hydraulic systems pumps are specified in MIL-H-8775 and for type III system pumps in MIL-H-8890.
Standard

Pumps, Hydraulic, Variable Flow, General Specification For

1999-07-01
HISTORICAL
AS19692A
This specification and a detail pump specification establish the requirements for variable flow hydraulic pumps, for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891, as applicable. The general requirements for type I and type II hydraulic systems pumps are specified in MIL-H-8775 and for type III system pumps in MIL-H-8890.
Standard

Aerospace – Military Type Variable Delivery, Pressure Compensated Hydraulic Pump

2016-06-22
CURRENT
AS19692B
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance, and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps used in military aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS. The hydraulic pumps defined by this AS are generally for use in aircraft hydraulic systems conforming to and as defined in AS5440 and MIL-H-8891, as applicable.
Standard

Aerospace - Application Guide for Hydraulic Power Transfer Units

2002-07-30
HISTORICAL
ARP1280A
This SAE Aerospace Recommended Practice (ARP) is an application guide for hydraulic power transfer units, and describes the various types, typical design approaches, their operational characteristics and limitations, circuit recommendations, and a tabulation of typical applications. The scope is limited to devices that transfer power between hydraulic systems and do so by means of rotary subassemblies such as hydraulic motors and pumps.
Standard

Aerospace - Application Guide for Hydraulic Power Transfer Units

2022-05-23
WIP
ARP1280C
This SAE Aerospace Recommended Practice (ARP) is an application guide for hydraulic power transfer units and describes: The various types Typical design approaches Their operational characteristics and limitations Circuit recommendations Typical applications The scope of this ARP is limited to devices that transfer power between hydraulic systems and do so by means of rotary subassemblies such as hydraulic motors and pumps.
Standard

Aerospace - Application Guide for Hydraulic Power Transfer Units

2014-11-13
CURRENT
ARP1280B
This SAE Aerospace Recommended Practice (ARP) is an application guide for hydraulic power transfer units and describes: The various types Typical design approaches Their operational characteristics and limitations Circuit recommendations Typical applications The scope of this ARP is limited to devices that transfer power between hydraulic systems and do so by means of rotary subassemblies such as hydraulic motors and pumps.
Standard

High Pressure Pneumatic Compressors Users Guide For Aerospace Applications

2007-11-07
HISTORICAL
AIR4994
Gas compressors (air and other compressible fluids) have been used sporadically since the 1940's for various utility functions in aerospace applications. They have been used to provide power to gun purge and drive systems, engine or APU starters (recharge accumulators), reservoir pressurization, cockpit pressurization, braking systems, canopy seals, engine control devices, landing gear activation, and boosted flight controls (see Table 1). In current state-of-the-art aircraft, most pneumatic system power is extracted from a stage of compression in the turbo-jet engine. As more and more demands are put on new generation engines for fuel economy and performance there is an increasing need for a new source of pneumatic power. This document is intended to describe current state-of-the-art technology in compressors, define the limitations, discuss enhancements needed and attempt to predict the needs of the future.
Standard

High Pressure Pneumatic Compressors Users Guide For Aerospace Applications

2013-11-11
CURRENT
AIR4994A
Gas compressors (air and other compressible fluids) have been used sporadically since the 1940's for various utility functions in aerospace applications. They have been used to provide power to gun purge and drive systems, engine or APU starters (recharge accumulators), reservoir pressurization, cockpit pressurization, braking systems, canopy seals, engine control devices, landing gear activation, and boosted flight controls (see Table 1). In current state-of-the-art aircraft, most pneumatic system power is extracted from a stage of compression in the turbo-jet engine. As more and more demands are put on new generation engines for fuel economy and performance there is an increasing need for a new source of pneumatic power. This document is intended to describe current state-of-the-art technology in compressors, define the limitations, discuss enhancements needed and attempt to predict the needs of the future.
Standard

PUMPS, HYDRAULIC, POWER DRIVEN, VARIABLE DELIVERY COMPOSITE OUTLINE DRAWINGS

2000-09-30
AIR45
Outline drawings from all known pump manufacturers for the various size pumps listed in MIL-P-7740 were requested and those received have been combined to make up the various outline drawings. There has been prepared a composite outline drawing enclosing all of the individual outline drawings. Since the pump manufacturers' drawings will change over a period of time and complete detail is not shown, it is not possible to make a detailed mockup of any specific pump. These drawings are intended to provide information concerning the general space requirement for variable delivery pumps, and could be used to manufacture a composite mockup to indicate roughly the space required on a new engine design.
Standard

Aerospace Auxiliary Power Sources

2020-11-19
CURRENT
AIR744D
This SAE Aerospace Information Report (AIR) is a review of the general characteristics of power sources that may be used to provide secondary, auxiliary, or emergency power for use in aircraft, space vehicles, missiles, remotely piloted vehicles, air cushion vehicles, surface effect ships, or other vehicles in which aerospace technology is used. The information contained herein is intended for use in the selection of the power source most appropriate to the needs of a particular vehicle or system. The information may also be used in the preparation of a power source specification. Considerations for use in making a trade study and an evaluation of the several power sources are included. More detailed information relating to specific power sources is available in other SAE Aerospace Information Reports or in Aerospace Recommended Practices.
X