Refine Your Search

Topic

Search Results

Standard

Aerospace Analog Fiber Optic Link

2012-07-24
CURRENT
AS6456
This SAE Aerospace Standard (AS) defines the parameters that describe the performance of an analog link transported over an optical fiber interconnect system suitable for aerospace applications.
Standard

Splicer, Fusion, Fiber Optic, Aerospace Non-Explosion-Proof (Type II)

2015-07-04
CURRENT
AS6479/2
This detail specification defines fiber optic fusion splicers acceptable for the installation and repair of a wide range of optical fibers and cables with virtually no insertion loss, particularly in aerospace applications, but not in flammable or explosive atmospheres (Type II). The requirements for acquiring the splicer described herein shall consist of this specification and the latest issue of AS6479.
Standard

Splicer, Fusion, Fiber Optic, Aerospace, Explosion-Proof (Type I)

2015-07-04
CURRENT
AS6479/1
This detail specification defines fiber optic fusion splicers acceptable for the installation and repair of a wide range of optical fibers and cables with virtually no insertion loss in hazardous environments (potentially flammable or explosive atmospheres, Type I), particularly aerospace applications. The requirements for acquiring the splicer described herein shall consist of this specification and the latest issue of AS6479.
Standard

Splicer, Fusion, Fiber Optic, Aerospace

2014-01-16
CURRENT
AS6479
This SAE Aerospace Standard (AS) defines fiber optic fusion splicers acceptable for the installation and repair of fiber optic interconnects in aerospace applications. Two different application environments are defined, depending on whether there is risk of flammable vapor or hazardous atmosphere being present. Equipment suited to flammable or hazardous environments may be over specified for factory, depot, or other relatively safe environments. To address these different application environments, two types of fusion splicer will be specified in applicable detail specifications: Type I. For hazardous environments specifically including potentially flammable or explosive atmospheres. Type II. For environments in which it is established that there is no risk of flammable or explosive vapors being present.
Standard

Connectors, Fiber Optic, Advanced, Circular or Rectangular, Plug and Receptacle, Environment Resistant, Removable Termini/Contacts, General Specification For

2018-02-19
WIP
AS5590B
This specification covers the performance requirements for a plug and receptacle. The connector inserts may contain multiple termini or multiple termini and electrical contacts. The connectors use removable termini, or removable termini and electrical contacts, and are capable of operating within a temperature range of -65 to +200 °C (see 1.2.1.1). These connectors are supplied under AS9100 reliability assurance program. An Amendment corresponding to this standard is available at AS5590_A1
Standard

Connectors, Fiber Optic, Advanced, Circular or Rectangular, Plug and Receptacle, Environment Resistant, Removable Termini, General Specification For

2004-02-24
HISTORICAL
AS5590
This specification covers the performance requirements for a plug and receptacle, multiple termini, fiber optic connector. Fiber optic connectors using removable termini, and are capable of operating within a temperature range of -65 to +200 °C (see 1.2.1.1). These connectors are supplied under MIL-STD-790 reliability assurance program. Statistical process control (SPC) techniques are required in the manufacturing process to minimize variation in production of connectors supplied to the requirements of this specification.
Standard

Connectors, Fiber Optic, Advanced, Circular or Rectangular, Plug and Receptacle, Environment Resistant, Removable Termini/Contacts, General Specification For

2013-07-16
CURRENT
AS5590A
This specification covers the performance requirements for a plug and receptacle. The connector inserts may contain multiple termini or multiple termini and electrical contacts. The connectors use removable termini, or removable termini and electrical contacts, and are capable of operating within a temperature range of −65 to +200 °C (see 1.2.1.1). These connectors are supplied under AS9100 reliability assurance program.
Standard

Digital Fiber Optic Link Loss Budget Methodology for Aerospace Platforms

2007-11-20
HISTORICAL
AS5603
This SAE Technical Report is an Aerospace Standard, compliant with the Organization and Operating Guide for the Aerospace Council of the SAE Technical Standards Board. It is consistent with the category (5) definition of an Aerospace Standard under Section 6.0, Technical Reports, in Paragraph 6.1.2. This document draws from, summarizes, and explains existing broadly accepted engineering best practices. This document defines the process and procedure for application of various best practice methods. This document is, specifically, intended as a standard for the engineering practice of development and execution of a link loss power budget for a general aerospace system related digital fiber optic link. It is not intended to specify the values associated with specific categories or implementations of digital fiber optic links. This document is intended to address both existing digital fiber optic link technology and accommodate new and emerging technologies.
Standard

Digital Fiber Optic Link Loss Budget Methodology for Aerospace Platforms

2010-11-03
CURRENT
AS5603A
This document defines the steps and documentation required to perform a digital fiber optic link loss budget. This document does not specify how to design a digital fiber optic link. This document does not specify the parameters and data to use in a digital fiber optic link loss budget.
Standard

Loss Budget Specification for Fiber Optic Links

2009-01-28
HISTORICAL
AS5750
This document defines a quantified means of specifying a digital fiber optic link loss budget: Between end users and system integrators Between system integrators and subsystem suppliers Between subsystem suppliers and component vendors The standard specifies methods and the margin required for categories of links.
Standard

Loss Budget Specification for Fiber Optic Links

2010-07-07
CURRENT
AS5750A
This document defines a quantified means of specifying a digital fiber optic link loss budget: Between end users and system integrators Between system integrators and subsystem suppliers Between subsystem suppliers and component vendors The standard specifies methods and the margin required for categories of links.
Standard

Transparent Optical Backbone Network Specification

2014-11-07
WIP
AS5659/1
This document provides a specification for the WDM Optical Backbone Network (OBN) within the SAE AS5659 WDM LAN specifications document family. The specification applies to any optical network which uses Wavelength Division Multiplexing (WDM) in any optical media, and describes a transparent optical network that contains optical components (i.e. without Optical-to-Electrical conversion). The specification describes optical network elements (ONE) that perform optical transport, optical add/drop, optical amplification, optical routing, and optical switching functions. Performance limits are given for conforming optical signal interfaces and transfer functions for the ONEs, as well as architectures comprising combinations of them. This specification will enable network and systems engineers to design and use scalable and upgradable WDM based optical networks aboard mobile platforms.
Standard

WDM LAN Access and Aggregation

2014-11-07
WIP
AS5659/2
This document describes the Client Adaptation Element (CAE), the set of functions that provides access and aggregation capability for the WDM LAN, within the SAE AS5659 WDM LAN specifications document family. In the WDM LAN, the CAE fits in between the Optical Backbone, which provides transmission of data over the transparent network, and the clients which the network serves. The complexity of the CAE depends on the types and number of clients.
X