Refine Your Search

Topic

Search Results

Journal Article

Drivability Analysis of Heavy Goods Vehicles

2010-10-05
2010-01-1981
The paper presents linear and non-linear driveline models for Heavy Goods Vehicles (HGVs) in order to evaluate the main parameters for optimal tuning, when considering the drivability. The implemented models consider the linear and non-linear driveline dynamics, including the effect of the engine inertia, the clutch damper, the driveshaft, the half-shafts and the tires. Sensitivity analyses are carried out for each driveline component during tip-in maneuvers. The paper also analyses the overall frequency response using Bode diagrams and natural frequencies. It is demonstrated that the most basic model capable of taking into account the first order dynamics of the driveline must consider the moments of inertia of the engine, the transmission and the wheels, the stiffness and the damping properties of the clutch damper, driveshaft and half-shafts, and the tires (which link the wheel to the equivalent inertia of the vehicle).
Journal Article

The Application of Control and Wheel Torque Allocation Techniques to Driving Modes for Fully Electric Vehicles

2014-04-01
2014-01-0085
The combination of continuously-acting high level controllers and control allocation techniques allows various driving modes to be made available to the driver. The driving modes modify the fundamental vehicle performance characteristics including the understeer characteristic and also enable varying emphasis to be placed on aspects such as tire slip and energy efficiency. In this study, control and wheel torque allocation techniques are used to produce three driving modes. Using simulation of an empirically validated model that incorporates the dynamics of the electric powertrains, the vehicle performance, longitudinal slip and power utilization during straight-ahead driving and cornering maneuvers under the different driving modes are compared.
Journal Article

A Parallel Hybrid Electric Drivetrain Layout with Torque-Fill Capability

2015-07-01
2015-01-9108
This paper discusses the torque-fill capability of a novel hybrid electric drivetrain for a high-performance passenger car, originally equipped with a dual-clutch transmission system, driven by an internal combustion engine. The paper presents the simulation models of the two drivetrains, including examples of experimental validation during upshifts. An important functionality of the electric motor drive within the novel drivetrain is to provide torque-fill during gearshifts when the vehicle is engine-driven. A gearshift performance indicator is introduced in the paper, and the two drivetrain layouts are assessed in terms of gearshift quality performance for a range of maneuvers.
Journal Article

Torque-Vectoring Control for an Autonomous and Driverless Electric Racing Vehicle with Multiple Motors

2017-03-28
2017-01-1597
Electric vehicles with multiple motors permit continuous direct yaw moment control, also called torque-vectoring. This allows to significantly enhance the cornering response, e.g., by extending the linear region of the vehicle understeer characteristic, and by increasing the maximum achievable lateral acceleration. These benefits are well documented for human-driven cars, yet limited information is available for autonomous/driverless vehicles. In particular, over the last few years, steering controllers for automated driving at the cornering limit have considerably advanced, but it is unclear how these controllers should be integrated alongside a torque-vectoring system. This contribution discusses the integration of torque-vectoring control and automated driving, including the design and implementation of the torque-vectoring controller of an autonomous electric vehicle for a novel racing competition. The paper presents the main vehicle characteristics and control architecture.
Journal Article

A Novel Seamless 2-Speed Transmission System for Electric Vehicles: Principles and Simulation Results

2011-06-09
2011-37-0022
This article deals with a novel 2-speed transmission system specifically designed for electric axle applications. The design of this transmission permits seamless gearshifts and is characterized by a simple mechanical layout. The equations governing the overall system dynamics are presented in the paper. The principles of the control system for the seamless gearshifts achievable by the novel transmission prototype - currently under experimental testing at the University of Surrey and on a prototype vehicle - are analytically demonstrated and detailed through advanced simulation tools. The simulation results and sensitivity analyses for the main parameters affecting the overall system dynamics are presented and discussed.
Journal Article

Selection of the Optimal Gearbox Layout for an Electric Vehicle

2011-04-12
2011-01-0946
The paper describes the advantages due to the adoption of multi-speed transmission systems within fully electric vehicles. In particular, the article compares a conventional single-speed transmission layout, a 2-speed layout based on a novel gearbox architecture capable of seamless gearshifts, and a Continuously Variable Transmission layout. The selection of the optimal gear ratios for the 2-speed system has been based on an optimization procedure, taking into account the efficiency characteristics of the components of the whole vehicle powertrain. The control system for the Continuously Variable Transmission system has been designed with the aim of maximizing the efficiency of the operating points of the electric motor.
Journal Article

Optimization of a Multiple-Speed Transmission for Downsizing the Motor of a Fully Electric Vehicle

2012-04-16
2012-01-0630
The research presented in this paper focuses on the effects of downsizing the electric motor drive of a fully electric vehicle through the adoption of a multiple-speed transmission system. The activity is based on the implementation of a simulation framework in Matlab / Simulink. The paper considers a rear wheel drive case study vehicle, with a baseline drivetrain configuration consisting of a single-speed transmission, which is compared with drivetrains adopting motors with identical peak power but higher base speeds and lower peak torques coupled with multiple-speed transmissions (double and three-speed), to analyze the benefits in terms of energy efficiency and performance. The gear ratios and gearshift maps for each multiple-speed case study are optimized through a procedure developed by the authors consisting of cost functions considering energy efficiency and performance evaluation. The cost functions are explained in the paper along with the models adopted for the research.
Technical Paper

Friction inside Wheel Hub Bearings: Evaluation through Analytical Models and Experimental Methodologies

2007-09-16
2007-24-0138
This paper presents an experimental methodology which can be adopted to measure the friction torque of the bearings in the wheel hubs of passenger vehicles. The first section of the paper highlights the reasons why an experimental device is necessary to have an objective evaluation of the performance of the bearing in terms of friction. In particular, the high level of approximation of the current formulas for the estimation of the friction inside a single bearing is discussed and demonstrated. An analytical methodology for the evaluation of the distribution of the axial load between the two bearings of the wheel hub is presented. However, its practical application for the precise calculation of the distribution of the load has to be checked through experimental tests.
Technical Paper

Vehicle Dynamics Simulation to Develop an Active Roll Control System

2007-04-16
2007-01-0828
Active Roll Control (ARC) is one of the most promising active systems to improve vehicle comfort and handling. This paper describes the simulation based procedure adopted to conceive a double-channel Active Roll Control system, characterized by the hydraulic actuation of the stabilizer bars of a sedan. The first part of the paper presents the vehicle model adopted for this activity. It is Base Model Simulator (BMS), the 14 Degrees-of-Freedom vehicle model by Politecnico di Torino. It was validated through road tests. Then the paper describes the development of the control algorithm adopted to improve the roll dynamics of the vehicle. The implemented control algorithm is characterized by a first subsystem, capable of obtaining the desired values of body roll angle as a function of lateral acceleration during semi-stationary maneuvers.
Technical Paper

An Objective Evaluation of the Comfort During the Gear Change Process

2007-04-16
2007-01-1584
This paper presents the methodology adopted by Politecnico di Torino Vehicle Dynamics Research Team to obtain objective indices for the evaluation of the comfort during the gear change process. Some test drivers and different passengers traveled on a test vehicle and assigned marks on the basis of their subjective feeling of comfort during the gearshifts. The comparison between the most significant subjective evaluations and the experimental values obtained by the instruments located on the vehicle is presented. As a consequence, some indices (based on physical parameters) to evaluate the efficiency and the comfort of the gearshift process are obtained. They are in good agreement with the subjective evaluations of the drivers and the passengers. The second part of the paper presents a driveline and vehicle model which was conceived to reproduce the phenomena experimented on the vehicle. The experimental validation of the model is presented.
Technical Paper

Driveline Modeling, Experimental Validation and Evaluation of the Influence of the Different Parameters on the Overall System Dynamics

2008-04-14
2008-01-0632
The paper presents the driveline models conceived by the author in order to evaluate the main parameters for an optimal tuning of the driveline of a passenger vehicle. The paper deals with a full modal analysis of the contributions of the different parts. The implemented models permit to consider the non-linear driveline dynamics, including the effect of the clutch damper (in terms of non-linear stiffness and variable amplitude hysteresis in the case of the models in the time domain) and the halfshafts, the engine mounting system and the tires. The influence of each component of the driveline on the overall frequency response of the system is presented. In particular, the paper demonstrates that the tire can be modeled like a non-linear damper within the rotational dynamics of the driveline and that it is the fundamental component contributing to the first order dynamics of the transmission.
Technical Paper

Block-oriented Models of Torque Gap Filler Devices for AMT Transmissions

2008-04-14
2008-01-0631
Vehicles equipped with Automated Manual Transmissions (AMT) for gear shift control show many advantages in terms of reduction of fuel consumption and improvement of driving comfort and shifting quality. In order to increase both performance and efficiency, an important target is focused on the minimization of the typical torque interruption during the gear shift, especially in front of the conventional automatic transmission. Recently, AMT are proposed to be connected with planetary gears and friction brakes, in order to reduce the torque gap during the gear change process. This paper is focused on a block-oriented simulation methodology developed in Matlab/Simulink/Stateflow® environment, able to simulate the performance of a complete FWD powertrain and in particular to predict dynamic performance and overall efficiency of the AMT with innovative Torque Gap Filler devices (TGF).
Technical Paper

Racing Simulation of a Formula 1 Vehicle with Kinetic Energy Recovery System

2008-12-02
2008-01-2964
This paper deals with the development of a Lap Time Simulator in order to carry out a first approximate evaluation of the potential benefits related to the adoption of the Kinetic Energy Recovery System (KERS). KERS will be introduced in the 2009 Formula 1 Season. This system will be able to store energy during braking and then use it in order to supply an extra acceleration during traction. Different technologies (e.g. electrical, hydraulic and mechanical) could be applied in order to achieve this target. The lap time simulator developed by the authors permits to investigate the advantages both in terms of fuel consumption reduction and the improvement of the lap time.
Technical Paper

A Failsafe Strategy for a Vehicle Dynamics Control (VDC) System

2004-03-08
2004-01-0190
The paper presents a failsafe strategy conceived for a Vehicle Dynamics Control (VDC) system developed by the Vehicle Dynamics Research Team of Politecnico di Torino. The main equations used by the failsafe algorithm are presented, especially those devoted to estimate steering wheel angle, body yaw rate and lateral acceleration, each of them fundamental to correctly actuate the VDC. The estimation is based on redundancy; each formula is considered according to a weight depending on the kind of maneuver. A new recovery algorithm is presented, which does not deactivate VDC after a sensor fault, but substitutes the sensor signal with the virtually estimated value. The results obtained through simulation are satisfactory. First experimental tests carried out on a ABS/VDC test bench of the Vehicle Dynamics Research Team of Politecnico di Torino confirmed the simulation results.
Technical Paper

Braking System Components Modelling

2003-10-19
2003-01-3335
The paper deals with a method implemented to study braking systems design, modelling components' characteristics through commercial software. It summarizes the potential improvement possible by using modelling techniques in chassis systems design. The first part consisted in producing a passive braking system model. A first validation was carried out on a test bench by using components of different braking systems. Particular attention was devoted to booster modelization both in semi-stationary and dynamic conditions. The second part was callipers, roll-back and thermal phenomena modelization. Finally, it were modelled Anti-lock Braking System (ABS) and Vehicle Dynamics Control (VDC) Hydraulic Units and their integration with control strategies and with vehicle dynamics model.
Technical Paper

Electro-Hydraulic Braking System Modelling and Simulation

2003-10-19
2003-01-3336
The first step toward a braking system ‘by wire’ is Electro-Hydraulic Braking System (EHB). The paper describes a method to evaluate through virtual experimentation the actual improvement in vehicle behaviour, from the point of view of both handling and comfort, including also pedal feeling, due to EHB. The first step consisted in modelling the hydraulic unit, comprehensive of sensors. Then it was conceived a control logic devoted to medium-low intensity braking manoeuvres, without ABS intervention, to determine an optimal braking force distribution and pedal feeling depending on the manoeuvre. A failsafe strategy, complete of on board diagnosis, to prevent dangerous system behaviour in the eventuality of a component failure was carried out and tested. Finally, EHB wheel pressure sensors were used to improve both ABS performance, increasing the adherence estimation, and Vehicle Dynamics Control (VDC) performance, through a more precise actuation.
Technical Paper

Driveline Layout Influence on Four Wheel Drive Dynamics

2004-03-08
2004-01-0860
The paper presents the research activity managed to investigate the dynamics of a 4WD vehicle equipped considering drivelines with different layout. The procedure developed required to conceive an on purpose simulator to compare performance through virtual experimentation. Drivelines mechanical main characteristics and performance increasing due to control strategy were evaluated. Preliminary road test were performed with a single driveline layout, to evaluate simulation reliability and limits. The paper presents the 4WD vehicle simulator, the main equations applied to model open, torque sensing and limited slip differentials, some preliminary road test results showing torque sensing driveline performance.
Technical Paper

Four-wheel-steering Control Strategy and its Integration with Vehicle Dynamics Control and Active Roll Control

2004-03-08
2004-01-1061
The paper presents a 4-wheel-steering (4WS) control strategy devoted to reduce the turn diameter for small longitudinal speed values and to obtain a yaw rate damping effect in dynamic manoeuvres. Moreover, the 4WS active system conceived produces compensation both for lateral wind and road irregularities. The main results obtained through a functional vehicle model are presented. 4WS was integrated with a Vehicle Dynamics Control (VDC), which was improved for turn while braking manoeuvres. The results due to integration were very good, with a reduction of both systems interventions. Finally, a VDC-4WS-Active Roll Control (ARC) integration was tried, based on only one reference body yaw rate for all the active systems. The main results obtained are presented and discussed.
Technical Paper

Active Roll Control to Increase Handling and Comfort

2003-03-03
2003-01-0962
The paper deals with the elaboration of an Active Roll Control (ARC) oriented both on comfort and handling improvement. The ARC determines hydraulically the variation of the equivalent stiffness of the anti-roll bars. The control strategies conceived were extensively validated through road tests managed on an Alfa Romeo sedan. The first part of the paper deals with comfort improvement, mainly consisting in an absence of bar effect during straight-ahead travel and in a modification of the roll characteristic of the car. To increase driver's handling feeling, it was necessary to optimise the ratio between front and rear roll stiffness. This purpose can be reached through control strategies based exclusively on lateral acceleration. Some control strategy corrections were necessary to optimise roll damping and front/rear roll stiffness balancing.
Technical Paper

Experimental Validation of a Heavy Goods Vehicle Fuel Consumption Model

2011-04-12
2011-01-1234
Over the last decade the simulation of driving cycles through longitudinal vehicle models has become an important stage in the design, analysis and selection of vehicle powertrains. This paper presents an overview of existing software packages, along with the development of a new multipurpose driving cycle simulator implemented in the Matlab/Simulink environment. In order to evaluate the performance of the simulator, a MAN TGL 12.240 multi-usage delivery vehicle was fitted with a CAN-bus data logger and used to create a series of ‘real-life’ drive cycles. These were inputted into the vehicle model and the simulated fuel mass flow-rate and engine rotational speed were compared to those experimentally obtained.
X