Refine Your Search

Topic

Search Results

Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Physical-Chemical Characteristics of Diesel-Biodiesel Blends with Additives and Their Effects on the Spray Behavior

2013-09-08
2013-24-0035
A set of additives was selected to improve the durability of the physical-chemical and biological characteristics of mineral diesel and its blend with biodiesel. Two biodiesels were used: soybean (SME) and rapeseed (RME). Both physical-chemical properties and fuel dispersion of fuel blends and their mixtures with additives were measured that could have effects on the combustion process in diesel engines. The dispersion of the fuel is affected by the injection nozzle integrity, influencing the capacity of the fuel to vaporize, while the modification of the fuel molecular structure can cause changes in combustion reaction. A 7 hole Common Rail (CR) 2nd generation injector, 136 μm in diameter, was used at 80 MPa and 1.0 ms injection pressure and duration, respectively. The injection rate was determined using the Bosch's Method, while the fuel dispersion was measured by analyzing the images of spray evolving in an optical accessible quiescent vessel.
Technical Paper

Influence of the Nozzle Geometry of a Diesel Single-Hole Injector on Liquid and Vapor Phase Distributions at Engine-Like Conditions

2013-09-08
2013-24-0038
The paper describes an experimental activity on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel at engine-like conditions. The influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio) has been studied by spraying fuel in an optically-accessible constant-volume combustion vessel. A high-speed imaging system, capable of acquiring Mie-scattering and Schlieren images in a near simultaneous fashion mode along the same line of sight, has been developed at the Michigan Technological University using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies have been performed at three injection pressures (70, 120 and 180 MPa), 23.9 kg/m3 ambient gas density and 900 K gas temperature in the vessel.
Technical Paper

Impact of the Nozzle Coking on Spray Formation for Diesel Injectors

2013-10-14
2013-01-2546
The performance and emission characteristics of the compression ignition engines are largely governed by the fuel atomization and air mixing, processes which in turn are strongly influenced by the flow dynamics inside the injector nozzle. This is controlled by dynamic (injection pressure, needle lift, etc.) and geometrical factors (orifice conicity, hydro grinding, etc.). Moreover, the modern diesel fuel injection systems are susceptible of deposits formation that can occur in different locations, e.g. in nozzle spray-holes and inside the injector body. The present paper describes the results of a research project aimed at studying the impact of injector coking on diesel spray formation for three injectors with different flow numbers. The characterization of the injection process has been carried out in terms of fuel injection rate as well as spatial and temporal fuel distribution in a quiescent chamber in non evaporative conditions.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Technical Paper

Multiple Injection in a Mixed Mode GDI Boosted Engine

2010-05-05
2010-01-1496
A numerical investigation is performed with the aim of understanding the potential benefits of multiple injections in the mixed mode boosting operation of a Gasoline Direct Injection (GDI) engine. The study is carried out by firstly characterizing a high pressure multi-hole injector from the experimental point of view in the split injection operation. Measurements of the fuel injection rate are made through an AVL Meter operating on the Bosch principle. The injector is tested using gasoline in a double pulse strategy. The injection pressure is varied between 5.0 and 25.0 MPa with the pulse durations calibrated for delivering a total mass up to 50 mg/str. The choice of the dwell time between two successive injection events is achieved by firstly defining the minimum time compatible with the mechanical characteristics of both the injector and the injector driver.
Technical Paper

Study of E10 and E85 Effect on Air Fuel Mixing and Combustion Process in Optical Multicylinder GDI Engine and in a Spray Imaging Chamber

2013-04-08
2013-01-0249
The aim of the present work is the study of the combustion process in Gasoline Direct Injection (GDI) engine fuelled with ethanol mixed with gasoline at percentages of 10 and 85. The characterization has been made in terms of performance and emission for different injection pressure conditions and the results correlated to the unperturbed non-evaporating evolution of the fuel injected in a pressurized quiescent vessel. Measurements were performed in the optically accessible combustion chamber made by modifying a real 4-stroke, 4-cylinder, high performance GDI engine. The cylinder head was instrumented by using an endoscopic system coupled to high spatial and temporal resolution camera in order to allow the visualization of the fuel injection and the combustion process. The engine is equipped with solenoid-actuated six-hole GDI injectors, 0.14 mm hole diameter, 9.0 g/s @ 10 MPa static flow.
Technical Paper

Experimental and Numerical Characterization of Gasoline-Ethanol Blends from a GDI Multi-Hole Injector by Means of Multi-Component Approach

2013-09-08
2013-24-0002
This paper reports an experimental and numerical investigation of the spray structure development for pure gasoline fuel and two different ethanol-gasoline blends (10% and 85% ethanol). A numerical methodology has been developed to improve the prediction of the pure and blends fuel spray. The fuel sprays have been simulated by means of a 3D-CFD code, adopting a multi-component approach for the fuel simulations. The vaporization behavior of the real fuel has been improved testing blends of 7 hydrocarbons and a reduced multi-component model has been defined in order to reduce the computational cost of the CFD simulations. Particular care has been also dedicated to the modeling of the atomization and secondary breakup processes occurring to the GDI sprays. The multi-hole jets have been simulated by means of a new atomization approach combined with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model.
Technical Paper

Studies of Exhaust Emissions and Optical Diagnostic of Spray for Biodiesel Samples with Additives Package using a Common-Rail System

2013-10-07
2013-36-0319
The use of biodiesel as alternative to fossil fuel for light duty CI engines to reduce greenhouse gas emissions was widely investigated. However, poor stability of biodiesel - diesel mixture limits the use of biodiesel to low volume concentrations. This paper presents the results concerning the use of a novel fuel additive package containing antioxidant (AS), pour-point depressant (D) and biocide (Bi) with the aim to increase the quality and amount of biodiesel in the diesel-biodiesel blends. Some of the goals are linked to the degradative effects due to free radicals oxidation, contamination by water and microorganisms. The interaction between two different additive packages and two biodiesel (soybean and rapeseed) - diesel blends at 20% in volume was investigated. Optical studies have been performed to characterize the spatial and temporal spray evolution both in a high pressure quiescent vessel and in an optically-accessible single-cylinder 2-stroke CI engine.
Technical Paper

Investigation of Diesel Injector Nozzle Flow Number Impact on Spray Formation and Combustion Evolution by Optical Diagnostics

2012-04-16
2012-01-0701
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
Technical Paper

GDI Spray-Wall Interaction with Numerical Characterization: Wall Temperature Influence

2015-04-14
2015-01-0917
The work analyses, from both an experimental and a numerical point of view, the impingement of a spray generated from a GDI injector on a hot solid wall. The temperature of the surface is identified as an important parameter affecting the outcome after impact. A gasoline spray issuing from a customized single-hole injector is characterized in a quiescent optically-accessible vessel as it impacts on an aluminum plate placed at 22.5 mm from the injector tip. Optical investigations are carried out at atmospheric back-pressure by a direct schlieren optical set-up using a LED as light source. A synchronized C-Mos high-speed camera captures cycle-resolved images of the evolving impact. The spatial and temporal evolution of the liquid and vapor phases are derived. They serve to define a data base to be used for the validation of a properly formulated 3D CFD model suitable to describe the impact of the fuel on the piston head in a real engine.
Technical Paper

Real Time Control of GDI Fuel Injection during Ballistic Operation Mode

2015-09-06
2015-24-2428
Gasoline direct injection (GDI) combustion with un-throttled lean stratified operation allows to reduce engine toxic emissions and achieve significant benefits in terms of fuel consumption. However, use of gasoline stratified charges can lead to several problems, such as a high cycle-to-cycle variability and increased particle emissions. Use of multiple injection strategies allows to mitigate these problems, but it requires the injection of small fuel amounts forcing the traditional solenoid injectors to work in their “ballistic” region, where the correlation between coil energizing time and injected fuel amount becomes highly not linear. In the present work a closed-loop control system able to manage the delivery of small quantities of fuel has been introduced. The control system is based on a particular feature found on the coil voltage command signal during the de-energizing phase.
Technical Paper

Impinging Jets of Fuel on a Heated Surface: Effects of Wall Temperature and Injection Conditions

2016-04-05
2016-01-0863
In spark ignition engines, the nozzle design, fuel pressure, injection timing, and interaction with the cylinder/piston walls govern the evolution of the fuel spray inside the cylinder before the start of combustion. The fuel droplets, hitting the surface, may rebound or stick forming a film on the wall, or evaporate under the heat exchange effect. The face wetting results in a strong impact on the mixture formation and emission, in particular, on particulate and unburned hydrocarbons. This paper aims to report the effects of the injection pressure and wall temperature on the macroscopic behavior, atomization, and vaporization of impinging sprays on the metal surface. A mono-component fuel, iso-octane, was adopted in the spray-wall studies inside an optically-accessible quiescent vessel by imaging procedures using a Z-shaped schlieren-Mie scattering set-up in combination with a high-speed C-Mos camera.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

Fuzzy Logic Approach to GDI Spray Characterization

2016-04-05
2016-01-0874
Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on a mono-component fuel spray (iso-octane), in order to define, in a stochastic way, the gas-liquid interface evolution. The image is a numerical matrix and so it is possible to characterize geometrical parameters and the time evolution of the jet by using deterministic, statistical stochastic and other several kinds of approach. The algorithm used works with the fuzzy logic concept to binarize the shades gray of the pixel, depending them, by using the schlieren technique, on the gas density. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray.
Technical Paper

Transient Heat Transfer Effects on a Gasoline Spray Impact against Hot Surfaces: Experimental and Numerical Study

2017-09-04
2017-24-0107
Gasoline direct injection (GDI) engines are characterized by complex phenomena involving spray dynamics and possible spray-wall interaction. Control of mixture formation is indeed fundamental to achieve the desired equivalence ratio of the mixture, especially at the spark plug location at the time of ignition. Droplet impact on the piston or liner surfaces has also to be considered, as this may lead to gasoline accumulation in the liquid form as wallfilm. Wallfilms more slowly evaporate than free droplets, thus leading to local enrichment of the charge, hence to a route to diffusive flames, increased unburned hydrocarbons formation and particulate matter emissions at the exhaust. Local heat transfer at the wall obviously changes if a wallfilm is present, and the subtraction of the latent heat of vaporization necessary for secondary phase change is also an issue deserving a special attention.
Technical Paper

A “Dynamic System” Approach for the Experimental Characterization of a Multi-Hole Spray

2017-09-04
2017-24-0106
The analysis of a spray behavior is confined to study the fluid dynamic parameters such as axial and radial velocity of the droplets, size distribution of the droplets, and geometrical aspect as the penetration length. In this paper, the spray is considered like a dynamic system and consequently it can be described by a number of parameters that characterize its dynamic behavior. The parameter chosen to describe the dynamic behavior is the external cone angle. This parameter has been detected by using an experimental injection chamber, a multi-hole (8 holes) injector for GDI applications and recorded by a high-speed C-Mos camera. The images have been elaborated by a fuzzy logic and neural network algorithm and are processed by using a chaos deterministic theory. This procedure carries out a map distribution of the working point of the spray and determines the stable (signature of the spray) and instable behavior.
Technical Paper

Iso-Octane Spray from a GDI Multi-Hole Injector under Non- and Flash Boiling Conditions

2017-10-08
2017-01-2319
GDI injection systems have become dominant in passenger cars due to their flexibility in managing and advantages in the fuel economy. With the increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the fuel spray behavior has become essential. Different engine loads produce in a variety of fuel supplying conditions that affect the air/fuel mixture preparation and influence the efficiency and pollutant production. The flash boiling is a particular state that occurs for peculiar thermodynamic conditions of the engine. It could strongly influence the mixture in sub-atmospheric environments with detrimental effects on emissions. In order to obtain an in-depth understanding of the flash boiling phenomena, it is necessary to study the parameters influencing the mixture formation and their appearance in diverse engine conditions.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
X