Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Hybrid-Powertrain Development Approach to Reduce Number of Prototype Vehicles by Taking Right Decision in Early Development Phases on Engine Testbeds

2021-09-22
2021-26-0449
Today’s automotive industry is changing rapidly towards environmentally friendly vehicle propulsion systems. All over the globe, legislative CO2 consumption targets are under discussion and partly already in force. Hybrid powertrain configurations are capable to lower fuel consumption and limit pollutant emissions compared to pure IC-Engine driven powertrains. Depending on boundary conditions a numerous of different hybrid topologies- and its control strategies are thinkable. Typical approach is to find the optimum hybrid layout and strategy, by performing certain technical design tasks in office simulation directly followed by vehicle prototype tests on the chassis dyno and road. This leads to a high number of prototype vehicles, overload on chassis dynos, time consuming road test and finally to tremendous costs. Our developed approach is using the engine testbed with simulation capabilities as bridging element between office and vehicle development environment.
Technical Paper

Methodology Development for Investigation and Optimization of Engine Starts in a HEV Powertrain

2022-03-29
2022-01-0484
The shift toward electrification and limitations in battery electric vehicle technology have led to high demand for hybrid vehicles (HEVs) that utilize a battery and an internal combustion engine (ICE) for propulsion. Although HEVs enable lower fuel consumption and emissions compared to conventional vehicles, they still require combustion of fuels for ICE operation. Thus, emissions from hybrid vehicles are still a major concern. Engine starts are a major source of emissions during any driving event, especially before the three-way catalyst (TWC) reaches its light-off temperature. Since the engine is subjected to multiple starts during most driving events, it is important to mitigate and better understand the impact of these emissions. In this study, experiments were conducted to analyze engine starts in a hybrid powertrain on different experimental setup.
Technical Paper

Increased 2-Wheeler Development Efficiency by Using a New Dedicated Test System Solution

2019-01-09
2019-26-0348
Fuel consumption is the most important contributor to the total cost of ownership for mass produced motorcycles. Therefore, best fuel economy is one main influencing criteria for a decision to purchase motorcycles. Furthermore, increasingly stringent emission legislations limit and additional OBD requirements must be fulfilled. A new combined test approach has been developed that minimizes accuracy losses in the development process which compensates for the variability of driving behavior in the chassis dyno environment. An engine testbed combined with a belt drive transmission enables operation in single engine or in Powerpack (i.e. internal combustion engine including transmission) configuration as well as under steady state or dynamic operating mode. Since the belt drive transmission is integrated in the test rig, realistic inertia situation for the single engine operating test configuration is ensured.
Technical Paper

Fuel Economy Development for a CVT Powertrain on Roller-Chassis Dynamometer and Transfer to Dynamic Engine Testbed

2017-11-05
2017-32-0064
The motorcycle and small engine industry is entering a chapter where emission legislation (EU5, BS6) is adapted to the automotive industries and especially CO2 emission is coming more and more into the focus of the OEMs, the legislative authorities and finally the end-user. Technologies like variable valve actuation, direct gasoline injection and turbo charging are state of the art in the automotive industry and have brought the efficiency of the internal combustion engine onto the next level. Nevertheless the small engine manufacturers are seeking for solutions which are cost efficient as well as simple and easy to apply. Even powertrain complexity is increasing the development efforts have to be kept moderate. Therefore, there is strong request for modern instrumentation and Testbeds which support an efficient and effective development process.
Technical Paper

Advanced 2-Wheeler Powertrain Test Setup for Dynamic Fuel Consumption Measurement with Increased Accuracy, Repeatability and Data Quality

2020-01-24
2019-32-0518
Specific test systems are essential for the development and optimization of powertrains for two-wheeler applications. The World Motorcycle Test Cycle (WMTC) is prevalently used for type approval certification in terms of emissions and fuel consumption. In this respect, decreasing fuel consumption and increasing efficiency within the WMTC is an important development goal. The aim of the development project presented in this paper was to investigate how the robustness and repeatability of the measurement data can be increased by using a specific measurement procedure and test setup. As fuel consumption and emission levels reach ever lower levels, any influencing factors related to performance and emissions are of particular interest within the powertrain development phase. When it comes to the differentiation of specific influencing factors such as lube oil behavior and its contribution to fuel consumption, very high measurement-repeatability and accuracy must be maintained.
X