Refine Your Search

Search Results

Journal Article

Use of a Catalytic Stripper as an Alternative to the Original PMP Measurement Protocol

2013-04-08
2013-01-1563
The Particle Measurement Programme (PMP) developed an exhaust particle number measurement protocol that has been adopted by current light duty vehicle emission regulations in Europe. This includes thermal treatment of the exhaust aerosol to isolate solid particles only and a number counting device with a lower cutpoint of 23 nm to avoid measurement of smaller particles that may affect the repeatability of the measurement. In this paper, we examine a potential alternative to the PMP system, where the thermal treatment is replaced by a catalytic stripper (CS). This offers oxidation and not just evaporation of the volatile components. Alternative sampling systems, either fulfilling the PMP recommendations or utilizing a CS, have been explored in terms of their volatile particle removal efficiency. Tests have been conducted on diesel exhaust, diesel equipped with DPF and gasoline direct injection emissions.
Journal Article

A Miniature Catalytic Stripper for Particles Less Than 23 Nanometers

2013-04-08
2013-01-1570
The European Emissions Stage 5b standard for diesel passenger cars regulates particulate matter to 0.0045 g/km and non-volatile part/km greater than 23 nm size to 6.0x10₁₁ as determined by the PMP procedure that uses a heated evaporation tube to remove semi-volatile material. Measurement artifacts associated with the evaporation tube technique prevents reliable extension of the method to a lower size range. Catalytic stripper (CS) technology removes possible sources of these artifacts by effectively removing all hydrocarbons and sulfuric acid in the gas phase in order to avoid any chemical reactions or re-nucleation that may cause measurement complications. The performance of a miniature CS was evaluated and experimental results showed solid particle penetration was 50% at 10.5 nm. The sulfate storage capacity integrated into the CS enabled it to chemically remove sulfuric acid vapor rather than rely on dilution to prevent nucleation.
Technical Paper

Comparison of Particle Number Measurements from the Full Dilution Tunnel, the Tailpipe and Two Partial Flow Systems

2010-04-12
2010-01-1299
The regulation of particle number (PN) has been introduced in the Euro 5/6 light-duty vehicle legislation, as a result of the light duty inter-laboratory exercise of the Particle Measurement Program (PMP). The heavy-duty inter-laboratory exercise investigates whether the same or a similar procedure can be applied to the heavy-duty regulation. In the heavy-duty exercise two "golden" PN systems sample simultaneously; the first from the full dilution tunnel and the second from the partial flow system. One of the targets of the exercise is to compare the PN results from the two systems. In this study we follow a different approach: We use a PMP compliant system at different positions (full flow, partial flow and tailpipe) and we compare its emissions with a "reference" system always sampling from the full flow dilution tunnel.
Journal Article

Theoretical Investigation of Volatile Removal Efficiency of Particle Number Measurement Systems

2010-04-12
2010-01-1304
Euro 5/6 light-duty vehicle emissions regulation introduced non-volatile particle number emission measurements. The particle number measurement system consists of a volatile removal unit followed by a particle number counter with a 50% cut-point diameter at 23 nm. The volatile removal unit must achieve a >99% concentration reduction of a monodisperse aerosol of tetracontane (CH 3 (CH 2 ) 38 CH 3 ) particles of diameter ≥30 nm with inlet concentration ≥10 4 cm −3 . In this paper the evaporation of tetracontane particles in the volatile removal unit is investigated theoretically. The temperature and the residence time in the evaporation tube are discussed, as well as the possibility of nucleation events of evaporated particles at the exit of the evaporation tube. In addition, sulfuric acid nucleation at the evaporation tube exit is analyzed. Theoretical calculations are, finally, compared to experimental data.
Technical Paper

Accuracy of Particle Number Measurements from Partial Flow Dilution Systems

2011-09-11
2011-24-0207
The measurement of the particle number (PN) concentration of non-volatile particles ≻23 nm was introduced in the light-duty vehicles regulation; the heavy-duty regulation followed. Based on the findings of the Particle Measurement Program (PMP), heavy-duty inter-laboratory exercise, the PN concentration measurement can be conducted either from the full dilution tunnel with constant volume sampling (CVS) or from the partial flow dilution system (PFDS). However, there are no other studies that investigate whether the PN results from the two systems are equivalent. In addition, even the PMP study never investigated the uncertainty that is introduced at the final result from the extraction of a flow by a PN system from the PFDS. In this work we investigate the uncertainty for the three possible cases, i.e., considering a constant extracted flow from the PFDS, sending a signal with 1 Hz frequency to the PFDS, or feeding back the extracted flow to the PFDS.
Technical Paper

Feasibility of Particulate Mass and Number Measurement with Portable Emission Measurement Systems (PEMS) for In-Use Testing

2011-09-11
2011-24-0199
Different particulate mass (PM) portable emission measurement systems (PEMS) were evaluated in the lab with three heavy-duty diesel engines which cover a wide range of particle emission levels. For the two engines without Diesel Particulate Filters (DPF) the proportional partial flow dilution systems SPC-472, OBS-TRPM, and micro-PSS measured 15% lower PM than the full dilution tunnel (CVS). The micro soot sensor (MSS), which measures soot in real time, measured 35% lower. For the DPF-equipped engine, where the emissions were in the order of 2 mg/kWh, the systems had differences from the CVS higher than 50%. For on-board testing a real-time sensor is necessary to convert the gravimetric (filter)-based PM to second-by-second mass emissions. The detection limit of the sensor, the particle property it measures (e.g., number, surface area or mass, volatiles or non-volatiles) and its calibration affect the estimated real-time mass emissions.
Journal Article

On-Site Checks of the Particle Number Measurement Systems with Polydisperse Aerosol

2012-04-16
2012-01-0873
Since 2011 a particle number (PN) limit was introduced in the European light-duty diesel vehicles legislation. The PN measurement systems consist of i) a hot diluter and an evaporation tube at 300-400°C for the removal of the volatiles (Volatile Particle Remover, VPR) and ii) a particle number counter (PNC) with a 50% cut-point (cut-off) at 23 nm. The PN measurement systems are calibrated and validated annually with monodisperse aerosol: The VPR for the particle concentration reduction factor (PCRF) and the PNC for the linearity and the cut-off size. However, there are concerns that the PN measurement systems can drift significantly over this period of time, raising concerns regarding the validity of the previous measurements, especially if the yearly validation fails.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Journal Article

Engine Exhaust Solid Sub-23 nm Particles: II. Feasibility Study for Particle Number Measurement Systems

2014-10-13
2014-01-2832
In the current heavy-duty engine and light-duty diesel vehicle exhaust emission legislation Particle Number (PN) limits for solid particles >23 nm are prescribed. The legislation was extended to include Gasoline Direct Injection (G-DI) vehicles since September 2014 and will be applied to Non-Road Mobile Machinery engines in the future. However there are concerns transferring the same methodology to other engine technologies, where higher concentration of sub-23 nm particles might exist. This paper focuses on the capabilities of existing PN measurement equipment on measuring solid particles smaller than 23 nm.
Journal Article

Engine Exhaust Solid Sub-23 nm Particles: I. Literature Survey

2014-10-13
2014-01-2834
In the current diesel vehicle exhaust emissions legislation Particle Number (PN) limits for solid particles >23 nm are prescribed. The legislation was extended to include Gasoline Direct Injection (G-DI) vehicles since September 2014. Target of this paper was to investigate whether smaller than 23 nm solid particles are emitted from engines in considerable concentration focusing on G-DI engines. The literature survey and the experimental investigation of >15 vehicles showed that engines emit solid sub-23 nm particles. The average percentage over a test cycle for G-DIs (30-40%) is similar to diesel engines. These percentages are relatively low considering the emission limit levels (6×1011 p/km) and the repeatability (10-20%) of the particle number method. These percentages are slightly higher compared to the percentages expected theoretically not to be counted due to the 23 nm cut-off size (5-15%).
Technical Paper

Effect of Speed and Speed-Transition on the Formation of Nucleation Mode Particles from a Light Duty Diesel Vehicle

2007-04-16
2007-01-1110
This work studies the formation of nucleation mode (NM) particles from a Euro 3 passenger car operating on 280 ppm wt. sulfur fuel, during on-road plume chasing and in the laboratory. The vehicle produced a distinct NM when its speed exceeded 100 km/h in both sampling environments. A higher particle number (up to 8 times) after 4 min at constant speed was measured when this speed was approached from a lower than from a higher speed. The variability in the measurement of NM particles was explained using literature information on sulfur-to-sulfate conversion over a catalyst and, in particular, on the extent and rate of sulfate storage and release mechanisms. All evidence led to the conclusion that storage and release processes take several minutes to conclude after a step-wise change in speed and have significant implications in the total particle number measurements during steady-speed testing.
Journal Article

Heavy Duty Particle Measurement Programme (PMP): Exploratory Work for the Definition of the Test Protocol

2009-06-15
2009-01-1767
The heavy duty Particle Measurement Programme (PMP) inter-laboratory exercise consists of three parts: 1) the exploratory work to refine the measurement protocol, 2) the validation exercise where each lab will measure the emissions of a “golden” engine with two “golden” particle number systems simultaneously sampling from full and partial flow dilution systems, and 3) the round-robin where the emissions of a “reference” engine will be determined with a lab’s own particle number instrumentation. This paper presents the results of the exploratory work and describes the final protocol for testing in the validation exercise (and round robin) along with the necessary facility modifications required for compliance with the protocol. Key aspects of the protocol (e.g. filter material, flow rates at the full and partial flow systems, the pre-conditioning etc.) are explained and justified.
Journal Article

Calibration and Validation of Various Commercial Particle Number Measurement Systems

2009-04-20
2009-01-1115
Measurement of particle number was introduced in the Euro 5/6 light duty vehicle emissions regulation. Although particle number measurement systems have to be calibrated by the manufacturers, labs have to validate the proper operation of their systems within one year of the emissions test. The systems must achieve a >99% reduction of an aerosol containing 30 nm tetracontane (CH3(CH2)38CH3) particles (C40) with an inlet concentration >104 #/cm3. They must also include an initial heated dilution stage with dilution of at least 10 which outputs a diluted sample at a temperature of 150°C–400°C. The system as a whole must achieve a particle number concentration reduction factor for particles of 30 nm and 50 nm electrical mobility diameters, that is no more than 30% and 20% respectively higher, and no more than 5% lower than that for particles of 100 nm.
Technical Paper

Comparative Assessment of Two Different Sampling Systems for Particle Emission Type-Approval Measurements

2005-04-11
2005-01-0198
The Particle Measurement Programme (PMP), initiated from different Member States, aims at developing a method and sampling recommendations for a particle number-based emission standard, to support future emission regulation in Europe. In this paper we applied two different commercially available dilution systems (an FPS from Dekati Ltd and an MD19-2E from Matter Engineering AG) to record the particle emissions of a Euro II and a Euro III diesel passenger car. The latter was also fitted with a diesel particle filter (DPF) to simulate future emission levels. At their present development stage, both dilution systems failed to totally comply with all requirements of the PMP protocol. The main problems appeared to be the lack of accurate determination of the dilution ratio and the inability to reach the desired dilution temperature.
Technical Paper

Performance Evaluation of a Novel Sampling and Measurement System for Exhaust Particle Characterization

2004-03-08
2004-01-1439
This paper presents a novel partial flow sampling system for the characterization of airborne exhaust particle emissions. The sampled aerosol is first conditioned in a porous dilutor and then subsequent ejector dilutors are used to decrease its concentration to the range of the instrumentation used. First we examine the sensitivity of aerosol properties to boundary sampling conditions. This information is then used to select suitable sampling parameters to distinguish both the nucleation and the accumulation mode. Selecting appropriate sampling parameters, it is demonstrated that a distinct nucleation mode can be formed and measured with different instruments. Using these parameters we examine the performance of the system over transient vehicle operation. Additionally, we performed calculations of particle losses in the various components of the system which are then used to correct signals from the instruments.
Technical Paper

Particle Emissions Characteristics of Different On-Road Vehicles

2003-05-19
2003-01-1888
Due to the stringent emission standards set worldwide, particulate matter (PM) emissions from diesel vehicles have been significantly curtailed in the last decade, and are expected to be reduced even further in the future. This evolution has brought forward two main issues: whether PM emissions should only be regulated for diesel vehicles and whether gasoline powered vehicles can be further neglected from PM emission inventories. This paper addresses these issues comparing the characteristics of particle emissions from a current diesel passenger car, a gasoline one and two small two-wheelers. It is shown that the gasoline car is a negligible source of particle emissions while the two-wheelers may be even more significant particle sources than the diesel car.
Journal Article

Particle Emission Measurements from L-Category Vehicles

2015-09-06
2015-24-2512
In 2011 a particle number (PN) limit was introduced in the European Union's vehicle exhaust legislation for diesel passenger cars. The PN method requires measurement of solid particles (i.e. those that do not evaporate at 350 °C) with diameters above 23 nm. In 2013 the same approach was introduced for heavy duty engines and in 2014 for gasoline direct injection vehicles. This decision was based on a long evaluation that concluded that there is no significant sub-23 nm fraction for these technologies. In this paper we examine the suitability of the current PN method for L-category vehicles (two- or three-wheel vehicles and quadri-cycles). Emission levels of 5 mopeds, 9 motorcycles, 2 tricycles (one of them diesel) and 1 quad are presented. Special attention is given to sub-23 nm emission levels. The investigation was conducted with PN legislation compliant systems with particle counters measuring above 23 nm and 10 nm.
Technical Paper

Evaluation of Portable Number Emission Systems for Heavy-Duty Applications under Steady State and Transient Vehicle Operation Conditions on a Chassis Dynamometer

2018-04-03
2018-01-0348
The European Commission plans to introduce a (solid) particle number (PN) emission limit for type approval and in-service conformity (ISC) by the end of 2018 (Euro VI d) using PEMS (Portable Emission Measurement System) tests on heavy duty vehicles on the road. Performance, measurement accuracy and sensitivity of several on-board particle counters for heavy duty applications have not been tested yet in parallel on a chassis dyno with Euro VI vehicle (N3-class, 12.8 l). The PN PEMS examined were CPC (Condensation Particle Counter) and DC (Diffusion Charger) based. Evaluation was conducted at different ambient temperatures from −7 °C to 35 °C while running different test cycles: WHVC (World Harmonized Vehicle Cycle), steady state engine operation, active regeneration and ISC-tests. A particle number system following the current heavy duty regulation requirement and recommendations of the Particle Measurement Program (PMP) served as reference (PMP_TP).
Technical Paper

Particle Measurement Programme (PMP):Particle Size and Number Emissions Before, During and After Regeneration Events of a Euro 4 DPF Equipped Light-Duty Diesel Vehicle.

2007-07-23
2007-01-1944
By early 2007, all major manufacturers of light-duty diesel vehicles are marketing models equipped with diesel particulate filters (DPFs). However, there is still a lack of understanding of the particles emitted when the DPF undergoes regeneration. This paper focuses on measuring particle emissions of a representative light-duty diesel vehicle equipped with DPF and employing a fuel-borne catalyst (FBC) to aid regeneration. Particulate Matter (PM) and non-volatile particle number emissions are measured throughout testing according to the Particle Measurement Programme (PMP) proposals. In addition, an Engine Exhaust Particle Sizer (EEPS) connected directly to the CVS is used to give real time size distributions of both volatile and non-volatile particles. The paper focuses on particle emissions during regenerating New European Driving Cycles (NEDCs).
Technical Paper

Particulate Matter (PM) Emissions of Euro 5 and Euro 6 Vehicles Using Systems with Evaporation Tube or Catalytic Stripper and 23 nm or 10 nm Counters

2020-09-15
2020-01-2203
Particle number (PN) emission limits were introduced in the European Union’s regulations for light-duty and heavy duty vehicles in the years 2011-2014. Since then, PN measurements have become a common practice in the automotive sector. Many studies showed that the current methodology, which counts particles >23 nm, misses a large fraction of particles for some engine technologies, such as port fuel injection vehicles or vehicles fueled with compressed natural gas (CNG). However, data for the latest technology vehicles are lacking. For this reason, we measured PN emissions >23 nm and >10 nm of >30 CNG, gasoline and diesel-fueled vehicles. Two systems were measuring in parallel from the full dilution tunnel; one with an evaporation tube and the other with a catalytic stripper. The PN emission levels spanned over three orders of magnitude depending on whether there was a particulate filter installed or not.
X