Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Comparison of Particle Number Measurements from the Full Dilution Tunnel, the Tailpipe and Two Partial Flow Systems

The regulation of particle number (PN) has been introduced in the Euro 5/6 light-duty vehicle legislation, as a result of the light duty inter-laboratory exercise of the Particle Measurement Program (PMP). The heavy-duty inter-laboratory exercise investigates whether the same or a similar procedure can be applied to the heavy-duty regulation. In the heavy-duty exercise two "golden" PN systems sample simultaneously; the first from the full dilution tunnel and the second from the partial flow system. One of the targets of the exercise is to compare the PN results from the two systems. In this study we follow a different approach: We use a PMP compliant system at different positions (full flow, partial flow and tailpipe) and we compare its emissions with a "reference" system always sampling from the full flow dilution tunnel.
Technical Paper

Feasibility of Particulate Mass and Number Measurement with Portable Emission Measurement Systems (PEMS) for In-Use Testing

Different particulate mass (PM) portable emission measurement systems (PEMS) were evaluated in the lab with three heavy-duty diesel engines which cover a wide range of particle emission levels. For the two engines without Diesel Particulate Filters (DPF) the proportional partial flow dilution systems SPC-472, OBS-TRPM, and micro-PSS measured 15% lower PM than the full dilution tunnel (CVS). The micro soot sensor (MSS), which measures soot in real time, measured 35% lower. For the DPF-equipped engine, where the emissions were in the order of 2 mg/kWh, the systems had differences from the CVS higher than 50%. For on-board testing a real-time sensor is necessary to convert the gravimetric (filter)-based PM to second-by-second mass emissions. The detection limit of the sensor, the particle property it measures (e.g., number, surface area or mass, volatiles or non-volatiles) and its calibration affect the estimated real-time mass emissions.
Journal Article

Engine Exhaust Solid Sub-23 nm Particles: I. Literature Survey

In the current diesel vehicle exhaust emissions legislation Particle Number (PN) limits for solid particles >23 nm are prescribed. The legislation was extended to include Gasoline Direct Injection (G-DI) vehicles since September 2014. Target of this paper was to investigate whether smaller than 23 nm solid particles are emitted from engines in considerable concentration focusing on G-DI engines. The literature survey and the experimental investigation of >15 vehicles showed that engines emit solid sub-23 nm particles. The average percentage over a test cycle for G-DIs (30-40%) is similar to diesel engines. These percentages are relatively low considering the emission limit levels (6×1011 p/km) and the repeatability (10-20%) of the particle number method. These percentages are slightly higher compared to the percentages expected theoretically not to be counted due to the 23 nm cut-off size (5-15%).
Technical Paper

Development of Measurement Methodology for Sub 23 nm Particle Number (PN) Measurements (SAE Paper 2020-01-2211)

A proposal for sub-23 nm Solid Particle Number (SPN) measurement method was developed by the Particle Measurement Programme (PMP) group, based on the current SPN measurement method. In the proposal, a Particle Number Counter (PNC) having (65 ±15)% counting efficiency at 10 nm and >90% at 15 nm (PNC10) replaces the current regulation PNC efficiency of 50±12% at 23 nm and >90% at 41 nm. Additionally, a catalytically active evaporation tube (CS) is required for sub-23 nm measurement method instead of the non-reactive evaporation tube (ET) of the current regulation. Here experimental work carried out at the JRC to address the issues of sub-23 nm SPN-measurement method is presented. The PNC10 was shown to be less dependent on the particle material than the PNC23, thus soot-like particles are still allowed for PNC-calibration. The high charging probability of soot-like particles was shown to have a low effect on PNC calibration uncertainties.