Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Applying Representative Interactive Flamelets (RIF) with Special Emphasis on Pollutant Formation to Simulate a DI Diesel Engine with Roof-Shaped Combustion Chamber and Tumble Charge Motion

2007-04-16
2007-01-0167
Combustion and pollutant formation in a new recently introduced Common-Rail DI Diesel engine concept with roof-shaped combustion chamber and tumble charge motion are numerically investigated using the Representative Interactive Flamelet concept (RIF). A reference case with a cup shaped piston bowl for full load operating conditions is considered in detail. In addition to the reference case, three more cases are investigated with a variation of start of injection (SOI). A surrogate fuel consisting of n-decane (70% liquid volume fraction) and α-methylnaphthalene (30% liquid volume fraction) is used in the simulation. The underlying complete reaction mechanism comprises 506 elementary reactions and 118 chemical species. Special emphasis is put on pollutant formation, in particular on the formation of NOx, where a new technique based on a three-dimensional transport equation within the flamelet framework is applied.
Journal Article

Applying an Interactively Coupled CFD-Multi-Zone Approach to Study the Effects of Piston Bowl Geometry Variations on PCCI Combustion

2009-06-15
2009-01-1955
Recently, a consistent mixing model for the two-way coupling of a CFD code and a zero-dimensional multi-zone code was developed. This work allowed for building an interactively coupled CFD-multi-zone approach that can be used to model HCCI combustion. In this study, the interactively coupled CFD-multi-zone approach is applied to PCCI combustion in a 1.9l FIAT GM Diesel engine. The physical domain in the CFD code is subdivided into multiple zones based on one phase variable (fuel mixture fraction). The fuel mixture fraction is the dominant quantity for the description of nonpremixed combustion. Each zone in the CFD code is represented by a corresponding zone in the zero-dimensional multi-zone code. The zero-dimensional multi-zone code solves the chemistry for each zone, and the heat release is fed back into the CFD code. The thermodynamic state of each zone, and thereby the phase variable, changes in time due to mixing and source terms (e.g., vaporization of fuel, wall heat transfer).
Technical Paper

Numerical Investigation of Recompression and Fuel Reforming in a SIDI-HCCI Engine

2007-07-23
2007-01-1878
Homogeneous Charge Compression Ignition (HCCI) is a combustion concept which has the potential for efficiency comparable to a DI Diesel engine with low NOx and soot emissions. However, HCCI is difficult to control, especially at low speeds and loads. One way to assist with combustion control and to extend operation to low speed and loads is to close the exhaust valve before TDC of the exhaust stroke, trapping and recompressing some of the hot residual. Further advantages can be attained by injecting the fuel into this trapped, recompressed mixture, where chemical reactions occur that improve ignitability of the subsequent combustion cycle. Even further improvement in the subsequent combustion cycle can be achieved by applying a spark, leading to a spark-assisted HCCI combustion concept.
Technical Paper

Experimental Investigation of the Effect of Multiple Injections on Pollutant Formation in a Common-Rail DI Diesel Engine

2008-04-14
2008-01-1191
In Common-Rail DI Diesel Engines, multiple injection strategies are considered as one of the methodologies to achieve optimum performance and emission reduction. However, multiple injections open a whole new horizon of parameters which affect the combustion process. These parameters include the number of injection events, the duration between the starts of each injection event, the splitting of the total fuel mass on the different injection events, etc. In the present work, the influence of the number of injection events and the influence of the duration between the starts of each injection event on emission levels are investigated. Combustion and pollutant formation were experimentally investigated in a Common-Rail DI Diesel engine. The engine was operated at conventional part-load conditions with 2000 rpm, no external EGR, and an injected fuel mass of 15 mg/cycle.
Technical Paper

Evaluation of Modeling Approaches for NOx Formation in a Common-Rail DI Diesel Engine within the Framework of Representative Interactive Flamelets (RIF)

2008-04-14
2008-01-0971
Representative Interactive Flamelets (RIF) have proven successful in predicting Diesel engine combustion. The RIF concept is based on the assumption that chemistry is fast compared to the smallest turbulent time scales, associated with the turnover time of a Kolmogorov eddy. The assumption of fast chemistry may become questionable with respect to the prediction of pollutant formation; the formation of NOx, for example, is a rather slow process. For this reason, three different approaches to account for NOx emissions within the flamelet approach are presented and discussed in this study. This includes taking the pollutant mass fractions directly from the flamelet equations, a technique based on a three-dimensional transport equation as well as the extended Zeldovich mechanism. Combustion and pollutant emissions in a Common-Rail DI Diesel engine are numerically investigated using the RIF concept. Special emphasis is put on NOx emissions.
Journal Article

A Cycle-Based Multi-Zone Simulation Approach Including Cycle-to-Cycle Dynamics for the Development of a Controller for PCCI Combustion

2009-04-20
2009-01-0671
Subject of this work is a simulation model for PCCI combustion that can be used in closed-loop control development. A detailed multi-zone chemistry model for the high-pressure part of the engine cycle is extended by a mean value model accounting for the gas exchange losses. The resulting model is capable of describing PCCI combustion with stationary excactness. It is at the same time very economic with respect to computational costs. The model is further extended by identified system dynamics influencing the stationary inputs. For this, a Wiener model is set up that uses the stationary model as a nonlinear system representation. In this way, a dynamic nonlinear model for the representation of the controlled plant Diesel engine is created.
Journal Article

Applying an Extended Flamelet Model for a Multiple Injection Operating Strategy in a Common-Rail DI Diesel Engine

2009-04-20
2009-01-0720
Subject of this work is the recently introduced extended Representative Interactive Flamelet (RIF) model for multiple injections. First, the two-dimensional laminar flamelet equations, which can describe the transfer of heat and mass between two-interacting mixture fields, are presented. This is followed by a description of the various mixture fraction and mixture fraction variance equations that are required for the RIF model extension accounting for multiple injection events. Finally, the modeling strategy for multiple injection events is described: Different phases of combustion and interaction between the mixture fields resulting from different injections are identified. Based on this, the extension of the RIF model to describe any number of injections is explained. Simulation results using the extended RIF model are compared against experimental data for a Common-Rail DI Diesel engine that was operated with three injection pulses.
X