Refine Your Search

Search Results

Standard

High-Strength, Quenched, and Tempered Structural Steels

1988-12-01
HISTORICAL
J368_198812
The steels covered by this SAE Recommended Practice have enhanced mechanical properties obtained by quench and temper treatment. Grade Q550 is a carbon-manganese steel, while grades Q550B, Q620B, and Q690B are carbon-manganese boron steels. Other grades (designated by suffix A) represent steels containing one or more additional alloying elements as required to achieve higher strengths and to accommodate greater thicknesses. These steels are produced fully deoxidized and to fine grain practice. Since these steels are characterized by their mechanical properties, care must be exercised in the selection of grade, especially where fabrication by welding or forming is required. Special procedures may be applicable to varying compositions and section sizes, as produced by a given supplier; therefore, the purchaser should consult with the producer in order to be aware of these variables.
Standard

Selection and Use of Steels

1981-04-01
HISTORICAL
J401_198104
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
Standard

Selection and Use of Steels

1977-11-01
HISTORICAL
J401_197711
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
Standard

Selection and Use of Steels

1988-12-01
HISTORICAL
J401_198812
The SAE system of designating steels, described in SAE J402, classifies and numbers them according to chemical composition. In the case of the dent resistant, high strength and ultra high strength steels in SAE J2340, advanced high strength steels described in SAE J2745, and the high strength steels in SAE J1442 and the high-strength carbon and alloy die drawn steels in SAE J935, minimum mechanical property requirements have been included in the designations. In addition, hardenability data on most of the alloy steels and some of the carbon steels will be found in SAE J1268.
Standard

Chemical Compositions of SAE Carbon Steels

1970-06-01
HISTORICAL
J403F_197006
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Carbon Steels

1984-05-01
HISTORICAL
J403_198405
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Carbon Steels

1994-05-01
HISTORICAL
J403_199405
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Carbon Steels

1980-09-01
HISTORICAL
J403_198009
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Carbon Steels

2000-06-28
HISTORICAL
J403_200006
An error has been found in the J403 6/2000 published standard. The following disclaimer explains the correction to the error: Standard J403-Revised 6/2000 - Table 1 for SAE 1006 (UNS10060), a Mn content of .45% Mn max. is allowed for structural shapes, plates, strip, sheets and welded tubing. Similarly, for SAE 1008 (UNS10080), a Mn content of 0.50% Mn max. is allowed for these products. In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry.
Standard

Chemical Compositions of SAE Carbon Steels

1988-12-01
HISTORICAL
J403_198812
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Carbon Steels

2001-11-26
HISTORICAL
J403_200111
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Alloy Steels

1970-04-01
HISTORICAL
J404G_197004
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Divison 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

Chemical Compositions of SAE Carbon Steels

2009-12-07
HISTORICAL
J403_200912
In 1941, the SAE Iron and Steel Division, in collaboration with the American Iron and Steel Institute (AISI), made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower cast or heat analysis ranges plus certain product analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels. For years the variety of chemical compositions of steel has been a matter of concern in the steel industry. It was recognized that production of fewer grades of steel could result in improved deliveries and provide a better opportunity to achieve advances in technology, manufacturing practices, and quality, and thus develop more fully the possibilities of application inherent in those grades.
Standard

Chemical Compositions of SAE Alloy Steels

1977-11-01
HISTORICAL
J404J_197711
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Divison 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
Standard

Chemical Compositions of SAE Alloy Steels

2000-06-28
HISTORICAL
J404_200006
In 1941, the SAE Iron and Steel Division in collaboration with the American Iron and Steel Institute (AISI) made a major change in the method of expressing composition ranges for the SAE steels. The plan, as now applied, is based in general on narrower ladle analysis ranges plus certain product (check) analysis allowances on individual samples, in place of the fixed ranges and limits without tolerances formerly provided for carbon and other elements in SAE steels (reference SAE J408). ISTC Divison 1 has developed a procedure which allows for the maintenance of the grade list in this SAE Standard. This will involve conducting an industry-wide survey to solicit input. This survey will be conducted at a frequency deemed necessary by the technical committee. Criteria have been established for the addition to or deletion of grades from the grade table.
X