Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Objective Driveability Development of Motorcycles with AVL-DRIVE

2014-11-11
2014-32-0020
Originally developed for the automotive market, a fully automatic real-time measurement tool AVL-DRIVE is commercially available for analyzing and scoring vehicle drive quality, also known as “Driveability”. This system from AVL uses its own transducers, calibrated to the sensitivity and response of the human body to measure the forces felt by the driver, such as acceleration, shock, surging, vibration, noise, etc. Simultaneously, the vehicle operating conditions are measured, (throttle grip angle, engine speed, gear, vehicle speed, temperature, etc.). Because the software is pre-programmed with the scores from a multitude of different vehicles in each vehicle class via neural networks and fuzzy logic formula, a quality score with reference to similar competitor vehicles is instantly given. This tool is already successfully implemented in the market for years to investigate such driveability parameters for passenger cars.
Technical Paper

Fuel Economy Development for a CVT Powertrain on Roller-Chassis Dynamometer and Transfer to Dynamic Engine Testbed

2017-11-05
2017-32-0064
The motorcycle and small engine industry is entering a chapter where emission legislation (EU5, BS6) is adapted to the automotive industries and especially CO2 emission is coming more and more into the focus of the OEMs, the legislative authorities and finally the end-user. Technologies like variable valve actuation, direct gasoline injection and turbo charging are state of the art in the automotive industry and have brought the efficiency of the internal combustion engine onto the next level. Nevertheless the small engine manufacturers are seeking for solutions which are cost efficient as well as simple and easy to apply. Even powertrain complexity is increasing the development efforts have to be kept moderate. Therefore, there is strong request for modern instrumentation and Testbeds which support an efficient and effective development process.
Technical Paper

Acoustics and Drivability as the Main Drivers for Customer Satisfaction for electrified 2-Wheeler

2020-01-24
2019-32-0525
Along with the global trend for electrification, also motorcycle industry is entering new spheres of highly advanced products and is increasing customer demands for electric mobility. Beside hard facts such as performance, driving range, durability and ease of use, also the brand specific attributes such as styling, driveability and even sound for electrified 2-wheeler are very emotional, unique selling prepositions. To determine the subjective parameters for driveability and acoustics, AVL has developed dedicated tools and methods to quantify these attributes with high maturity. In terms of acoustics and NVH there are several crucial noise sources within electrified powertrains, which have to be treated with high attention from the initial development phase to avoid any kind of unforeseen annoyances: E-motor with inverter, transmission and secondary drive are most relevant. This issue becomes even more important with the ongoing market trend of products featuring increased power.
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
X