Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Parametric Study Based on a Phenomenological Model to Investigate the Effect of Post Fuel Injection on HDDI Diesel Engine Performance and Emissions-Model Validation Using Experimental Data

2008-04-14
2008-01-0641
A major challenge for researchers and engineers in the field of diesel engine development is the simultaneous reduction of both NOx and soot emissions from diesel engines to comply with strict future emission legislation. One of the promising internal measures that focus on the reduction of soot emissions is post fuel injection which does not have a serious effect on NOx emissions. The main parameters involved when using this technique are post fuel quantity and dwell angle between the main and the post fuel injection events. In the present work a detailed computational investigation has been conducted to determine the effect of post fuel injection on engine performance and pollutant emissions (NOx and soot). To this scope, a phenomenological multi-zone combustion model has been used, properly modified to take into account the interaction of post and main injected fuel amounts.
Technical Paper

Use of a Multi-Zone Combustion Model to Interpret the Effect of Injector Nozzle Hole Geometry on HD DI Diesel Engine Performance and Pollutant Emissions

2005-04-11
2005-01-0367
A major challenge in the development of future heavy-duty diesel engines is the reduction of NOx and particulate emissions with minimum penalties in fuel consumption. The further decrease of emission limits (i.e., EPA 2007-2010, Euro 5 and Japan 05) requires new, advanced approaches. The injection system of DI diesel engines has an important role regarding the fulfillment of demands for low pollutant emissions and high engine efficiency. One of the injection system parameters affecting fuel spray characteristics, fuel-air mixing and consequently, combustion and pollutant formation is the geometry of the nozzle hole. A detailed experimental investigation was conducted at UPV-CMT using three different nozzle hole types: a standard, a convergent and a divergent one to discern the effect of nozzle hole conical shape on engine performance and emissions.
Technical Paper

Possibilities to Achieve Future Emission Limits for HD DI Diesel Engines Using Internal Measures

2005-04-11
2005-01-0377
The diesel engine is currently the most efficient powertrain for vehicle propulsion. Unfortunately it suffers from rather high particulate and NOx emissions that are directly related to its combustion mechanism. Future emission legislation requires drastic reduction of NOx and particulate matter compared to present values. Engine manufacturers in their effort to meet these limits propose two solutions: reduction of pollutants inside the combustion chamber using internal measures and reduction at the tailpipe using aftertreatment technology. Currently there are various opinions considering the final solution. Taking into account information related to aftertreatment technology, an effort should be made to reduce pollutants inside the combustion chamber as much as possible. The last is obvious if we account for the even more strict emission limits to be applied after 2010 that will require a combination of aftertreatment and internal measures.
Technical Paper

An Integrated Transient Analysis Simulation Model Applied in Thermal Loading Calculations of an Air-Cooled Diesel Engine Under Variable Speed and Load Conditions

1997-02-24
970634
A comprehensive transient analysis simulation model is used for the calculation of diesel engine performance under variable speed and load conditions. The analysis includes a detailed description of engine subsystems under transient conditions, thus accounting for the continuously changing character of transient operation, simulating among others the fuel injection, transient mechanical friction, heat losses to the walls and governor operation. The results of engine performance, at every time step during the transient event, are used as inputs for the formulation of thermal boundary conditions, which are needed for the calculation in a parallel way of the thermal transients propagating inside the engine structure.
Technical Paper

A Simulation Analysis of the Effect of Governor Technical Characteristics and Type on the Transient Performance of a Naturally Aspirated IDI Diesel Engine

1997-02-24
970633
A transient analysis simulation program is developed for studying the response of an indirect injection, naturally aspirated, diesel engine after a rapid increase in load when this is equipped with various types of indirect acting governors. Analytical expressions are presented for the better simulation of engine mechanical friction, inertia moments and heat loss to the walls under transient conditions, governor dynamics for both the sensing element and the servopiston, soot emissions and the fuel pump operation. Various types of governor sensing elements (i.e. mechanical, electrical, two-pulse) and feedbacks (i.e. unity and vanishing) for the servomechanism are studied. Explicit diagrams are given to show how each combination of governor type and technical parameters (i.e. mass and number of flyweights, geometrical dimensions, amplification factors) affects the speed response as well as the speed droop and the recovery period of the particular engine.
Technical Paper

Effect of Injection Pressure on the Performance and Exhaust Emissions of a Heavy Duty DI Diesel Engine

2003-03-03
2003-01-0340
During the recent years, extensive research is conducted worldwide for the purpose of tailpipe emission reduction from diesel engines. These efforts resulted in the achievement of very low emission levels for today's diesels. But considering the future legislation it is required a further drastic reduction. Towards this direction, a multi-zone combustion model is used in the present study to investigate the effect of fuel injection pressure level on the performance and pollutant emissions from a Heavy Duty DI diesel engine. For this purpose it is made use of injection pressure histories obtained from a detailed simulation model at various engine operating conditions. The increase of injection pressure is accomplished by increasing the injector opening pressure from 400 up to 1600 bar.
Technical Paper

Using a Phenomenological Multi-Zone Model to Investigate the Effect of Injection Rate Shaping on Performance and Pollutants of a DI Heavy Duty Diesel Engine

2002-03-04
2002-01-0074
The direct injection heavy-duty diesel engine is the main propulsion unit for trucks, lories and other heavy-duty vehicles mainly due to its superior efficiency when compared to other existing reciprocating engines. However, this engine suffers from relatively high particulate and nitric oxide emission levels. Considering current legislation for emissions and especially future limits, it seems that a great deal of research is required to satisfy these limits and maintain efficiency at a high level. As widely recognized, the fuel injection mechanism plays an important role for both engine performance and pollutant emissions. The major problem is to seek solutions that enable the control of major pollutants, nitric oxide and particulate matter. For this reason, various injection rate shapes have been proposed which require sophisticated fuel injection equipment and extremely high fuel injection pressures. Now two main categories are considered, common rail fuel injection system and PLN.
Technical Paper

Experimental Investigation of the Effect of Fuel Composition on the Formation of Pollutants in Direct Injection Diesel Engines

1999-03-01
1999-01-0189
A great deal of research is taking place at the present time in the field of diesel engines, especially regarding the emission of gaseous pollutants and soot. This research is essential for engine manufacturers since it is difficult for diesel engines to meet current standards regarding soot and nitric oxide emissions. The problem will become even more severe when the new legislation will be applicable requiring a 50% reduction of existing levels. Many manufacturers and researchers feel that engines will be difficult to meet this criterion without the use of other techniques such as gas aftertreatment or newly developed fuels (low sulfur content, etc.). The aim of this research is to examine the effect of fuel composition and physical properties on the mechanism of combustion and pollutants formation.
Technical Paper

Development and Validation of a Detailed Fuel Injection System Simulation Model for Diesel Engines

1999-03-01
1999-01-0527
The fuel injection system of diesel engines is of great importance since it controls the combustion mechanism. The rate of injection and the speed of injected fuel are important parameters for engine operation, controlling the combustion and pollutants formation mechanisms. A fuel injection system simulation capable of predicting the performance of the injection system to a good degree of accuracy has been developed. The simulation is based on a detailed geometrical description of the injection system and in modeling each subsystem as a separate control volume. The simulation starts at the driving mechanism of the fuel pump and describes all parts of the system pump chamber, delivery valve, delivery chamber, connecting pipe and injector. The components of the system are put together and interact as they do in reality. From the cam geometry an analytical expression is derived that gives the pump piston lift as a function of the engine crank angle.
X