Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Modeling and Simulation of Compression Molding Process for Sheet Molding Compound (SMC) of Chopped Carbon Fiber Composites

2017-03-28
2017-01-0228
Compression molded SMC composed of chopped carbon fiber and resin polymer which balances the mechanical performance and manufacturing cost presents a promising solution for vehicle lightweight strategy. However, the performance of the SMC molded parts highly depends on the compression molding process and local microstructure, which greatly increases the cost for the part level performance testing and elongates the design cycle. ICME (Integrated Computational Material Engineering) approaches are thus necessary tools to reduce the number of experiments required during part design and speed up the deployment of the SMC materials. As the fundamental stage of the ICME workflow, commercial software packages for SMC compression molding exist yet remain not fully validated especially for chopped fiber systems. In the present study, SMC plaques are prepared through compression molding process.
Journal Article

Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development

2016-04-05
2016-01-0498
Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple types of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure.
Technical Paper

Influence of Weld Lines on the Mechanical Properties of Talc Filled Polypropylene

2020-04-14
2020-01-1306
Weld lines can significantly reduce ultimate tensile strength (UTS) and fracture strain of talc filled polypropylene (PP). In this paper, two different injection molding tests were completed. First, an injection mold with triangular inserts was built to study the influence of meeting angles on material properties at the weld line region. Tensile samples were cut at different locations along the weld line on the injection molded plaques. The test results showed that both UTS and fracture strain increase when the sample locations are away from the insert. This trend is attributed to different meeting angles. Second, standard ISO tensile bars with and without weld line were injection molded to identify the size of the weld line affected zone. A FEA model was built in ABAQUS, where the tensile sample was divided into two different regions, the solid region and the weld line affected region.
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

2009-04-20
2009-01-1172
Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

Characterization of 6XXX Series Aluminum Extrusions Using Digital Image Correlation (DIC) technique

2017-03-28
2017-01-0316
Aluminum extrusions are used in the automotive industry for body structure applications requiring cross-section design flexibility, high section stiffness, and high strength. Heat-treatable 6xxx series extrusion alloys have typically been used in automotive due to commercial availability, competitive cost, high strength, and impact performance. This paper presents a characterization study of mechanical properties of 6xxx series aluminum extrusions using digital image correlation (DIC). DIC has been used to capture spatial strain distribution and its evolution in time during material deformation. The materials of study were seamless and structural 6061 and 6082 extrusions. The alloys have been tensile tested using an MTS load frame with a dual optical camera system to capture the stereoscopic digital images. Notable results include the differing anisotropy of seamless and structural extrusions, as well as the influence of artificial aging on anisotropy.
Technical Paper

Weld Line Factors for Thermoplastics

2017-03-28
2017-01-0481
Weld lines occur when melt flow fronts meet during the injection molding of plastic parts. It is important to investigate the weld line because the weld line area can induce potential failure of structural application. In this paper, a weld line factor (W-L factor) was adopted to describe the strength reduction to the ultimate strength due to the appearance of weld line. There were two engineering thermoplastics involved in this study, including one neat PP and one of talc filled PP plastics. The experimental design was used to investigate four main injection molding parameters (melt temperature, mold temperature, injection speed and packing pressure). Both the tensile bar samples with/without weld lines were molded at each process settings. The sample strength was obtained by the tensile tests under two levels of testing speed (5mm/min and 200mm/min) and testing temperatures (room temperature and -30°C). The results showed that different materials had various values of W-L factor.
Technical Paper

Warpage Prediction on Injection Molded Semi-Crystalline Thermoplastics

2018-04-03
2018-01-0149
Warpage is the distortion induced by inhomogeneous shrinkage during injection molding of plastic parts. Uncontrolled warpage will result in dimensional instability and bring a lot of challenges to the mold design and part assembly. Current commercial simulation software for injection molding cannot provide consistently accurate warpage prediction, especially for semi-crystalline thermoplastics. In this study, the root cause of inconsistency in warpage prediction has been investigated by using injection molded polypropylene plaques with a wide range of process conditions. The warpage of injection molded plaques are measured and compared to the numerical predictions from Moldex3D. The study shows that with considering cooling rate effect on crystallization kinetics and using of the improved material model for residual stress calculations, good agreements are obtained between experiment and simulation results.
Technical Paper

Stretch Flanging Formability Prediction and Shape Optimization

2006-04-03
2006-01-0351
Flanging is a secondary operation in sheet metal forming processes. Traditionally, the design of flange shape and trim line is based on an engineer's experience. It takes several iterations to achieve the desired flange geometry because of potential splits. In this paper, an efficient CAE-based tool is developed to quickly predict the formability of a given flange design and enable the optimization of trim lines. A numerical algorithm is formulated in this CAE tool to convert the 3D flanging process into an equivalent in-plane deformation problem. The developed CAE tool is also integrated with the optimization software LS-OPT for trim line design.
Technical Paper

A Comparative Study of Dent Resistance Incorporating Forming Effects

2005-04-11
2005-01-0089
Dent resistance is an important attribute in the automotive panel design, and the ability to accurately predict a panel's dentability requires careful considerations of sheet metal properties, including property changes from stamping process. The material is often work-hardened significantly during forming, and its thickness is reduced somewhat. With increased demand for weight reduction, vehicle designers are seriously pushing to use thinner-gauged advanced high-strength steels (AHSS) as outer body panels such as fenders, hoods and decklids, with the expectation that its higher strength will offset reduced thickness in its dentability. A comparative study is conducted in this paper for a BH210 steel fender as baseline design and thinner DP500 steel as the new design.
Technical Paper

Property and Fiber Orientation Determination for Carbon Fiber Composite

2018-04-03
2018-01-1216
Unexpected severe failures occur during the warm forming procedure of carbon fiber material due to the existence of extremely large deformation/strain. To evaluate this failure, a good understanding the accurate material property under certain loading is important to evaluate the forming feasibility of carbon fiber material. Also, a clear connection between the fiber orientation and the material property helps to increase the accuracy of the forming prediction. Therefore, an experimental test is needed to evaluate the material property as well as the fiber orientation. In this paper, a uniaxial tension test for the prepreg carbon fiber under the warm forming condition is performed. A halogen lamp is used to heat the specimen to reach the warm forming condition. A 3D Digital Image Correlation (3D-DIC) is utilized to measure the material property and the fiber orientation in this test, along with a DIP system.
Journal Article

A Path Independent Forming Limit Criterion for Sheet Metal Forming Simulations

2008-04-14
2008-01-1445
A new strain-based forming limit criterion is proposed to assess the localized necking failure for sheet metal forming simulations when deformation paths deviate significantly from linearity. Different from the traditional strain-based Forming Limit Diagrams (FLD) in terms of major and minor strains, the new FLD is constructed based on effective strains and material flow direction at the end of forming. This new criterion combines the advantages of stress-based FLD for its path-independence and the traditional linear strain path FLD for its easy interpretation. The proposed FLD is validated through both theoretical prediction with Marciniak-Kuczynski (M-K) model and available experimental data in literature, and its relationship with stress-based FLDs is discussed.
X