Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Analyzing the Cycle-to-Cycle Variations of Vapor and Liquid Phases of Evaporating SIDI Sprays via Proper Orthogonal Decomposition Technique

2015-09-01
2015-01-1901
In this study, the spray characteristics of three multi-hole injectors, namely a 2-hole injector, a 4-hole injector, and a 6-hole injector were investigated under various superheated conditions. Fuel pressure was kept constant at 10MPa. Fuel temperature varied from 20°C to 85°C, and back pressure ranged from 20kPa to 100kPa. Both liquid phase and vapor phase of the spray were investigated via laser induced exciplex fluorescence technique. Proper orthogonal decomposition technique was applied to analyze the cycle-to-cycle variations of the liquid phase and vapor phase of the fuel spray separately. Effects of fuel temperature, back pressure, superheated degree and nozzle number on spray variation were revealed. It shows that higher fuel temperature led to a more stable spray due to enhanced evaporation which eliminated the fluctuating structures along the spray periphery. Higher back pressure led to higher spray variation due to increased interaction between spray and ambient air.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

High-Speed Flow and Combustion Visualization to Study the Effects of Charge Motion Control on Fuel Spray Development and Combustion Inside a Direct-Injection Spark-Ignition Engine

2011-04-12
2011-01-1213
An experimental study is performed to investigate the effects of charge motion control on in-cylinder fuel-air mixture preparation and combustion inside a direct-injection spark-ignition engine with optical access to the cylinder. High-pressure production injector is used with fuel pressures of 5 and 10 MPa. Three different geometries of charge motion control (CMC) device are considered; two are expected to enhance the swirl motion inside the engine cylinder whereas the third one is expected to enhance the tumble motion. Experiments are performed at 1500 rpm engine speed with the variation in fuel injection timing, fuel pressure and the number of injections. It is found that swirl-type CMC devices significantly enhance the fuel-air mixing inside the engine cylinder with slower spray tip penetration than that of the baseline case without CMC device. Combustion images show that the flame growth is faster with CMC device compared to the similar case without CMC device.
Technical Paper

A Study of Fuel Impingement Analysis on In-Cylinder Surfaces in a Direct-Injection Spark-Ignition Engine with Gasoline and Ethanol-Gasoline Blended Fuels

2010-10-25
2010-01-2153
An experimental study is performed to investigate the fuel impingement on cylinder walls and piston top inside a direct-injection spark-ignition engine with optical access to the cylinder. Three different fuels, namely, E85, E50 and gasoline are used in this work. E85 represents a blend of 85 percent ethanol and 15 percent gasoline by volume. Experiments are performed at different load conditions with the engine speeds of 1500 and 2000 rpm. Two types of fuel injectors are used; (i) High-pressure production injector with fuel pressures of 5 and 10 MPa, and (ii) Low-pressure production-intent injector with fuel pressure of 3 MPa. In addition, the effects of split injection are also presented and compared with the similar cases of single injection by maintaining the same amount of fuel for the stoichiometric condition. Novel image processing algorithms are developed to analyze the fuel impingement quantitatively on cylinder walls and piston top inside the engine cylinder.
Technical Paper

Development of a POD-Based Analysis Approach for Quantitative Comparison of Spray Structure Variations in a Spark-Ignition Direct-Injection Engine

2013-10-14
2013-01-2545
Strong cycle-to-cycle variations of fuel spray are observed due to the highly transient in-cylinder airflow in spark-ignition direct-injection (SIDI) engine. The spray structure comparison based on ensemble-averaged image may be misleading sometimes because the spray images for the same engine running condition could be different from cycle to cycle. Also, the visual comparison of spray images from many cycles is only qualitative and very time-consuming. Therefore, the present paper provides a novel approach to make quantitative comparison of spray structures from different engine conditions, or comparison between experiment and simulation (such as large eddy simulation, LES). The methodology is based on the proper orthogonal decomposition (POD), which has been utilized for in-cylinder turbulent flow research for over a decade.
Technical Paper

Quantitative Characterization of Near-Field Fuel Sprays by Multi-Orifice Direct Injection Using Ultrafast X-Tomography Technique

2006-04-03
2006-01-1041
A low-pressure direct injection fuel system for spark ignition direct injection engines has been developed, in which a high-turbulence nozzle technology was employed to achieve fine fuel droplet size at a low injection pressure around 2 MPa. It is particularly important to study spray characteristics in the near-nozzle region due to the immediate liquid breakup at the nozzle exit. By using an ultrafast x-ray area detector and intense synchrotron x-ray beams, the interior structure and dynamics of the direct injection gasoline sprays from a multi-orifice turbulence-assisted nozzle were elucidated for the first time in a highly quantitative manner with μs-temporal resolution. Revealed by a newly developed, ultrafast computed x-microtomography technique, many detailed features associated with the transient liquid flows are readily observable in the reconstructed spray.
Technical Paper

Application of an Imaging-based Diagnostic Technique to Quantify the Fuel Spray Variations in a Direct-Injection Spark-Ignition Engine

2003-03-03
2003-01-0062
This paper presents an imaging-based diagnostic technique to quantify the pulse-to-pulse variability of macroscopic fuel spray characteristics for Direct-Injection Spark-Ignition (DISI) engine applications. The analysis approach is based on the construction of a spray ensemble image, reflecting the regions of probability of liquid presence for a set of images. Overlaying of an individual spray boundary on the probability-based ensemble image can further enhance the two-dimensional visualization of the pulse-to-pulse spray variations. Spray structures at three experimental conditions were examined: room ambient, and early and late injection conditions inside an optical engine. While the spray structure was observed to be considerably different for the three conditions, the magnitudes of variation of global spray shape and spray tip penetration distance were found to be of similar order.
Technical Paper

Effect of Injection Pressure on Nozzle Internal Flow and Jet Breakup under Sub-Cooled and Flash Boiling Test Conditions

2019-04-02
2019-01-0286
Injection pressure plays a vital role in spray break-up and atomization. High spray injection pressure is usually adopted to optimize the spray atomization in gasoline direct injection fuel system. However, higher injection pressure also leads to engine emission problem related to wall wetting. To solve this problem, researchers are trying to use flash boiling method to control the spray atomization process under lower injection test conditions. However, the effect of injection pressure on the spray atomization under flash boiling test condition has not been adequately investigated yet. In this study, quantitative study of internal flow and near nozzle spray breakup were carried out based on a two-dimensional transparent nozzle via microscopic imaging and phase Doppler interferometery. N-hexane was chosen as test fluid with different injection pressure conditions. Fuel temperature varied from 112°C to 148°C, which covered a wide range of superheated conditions.
Technical Paper

Influence of the Injector Configuration on the Spray Evaporation Characteristics under Superheated Conditions

2015-09-01
2015-01-1900
In spark ignition direct injection (SIDI) engines, the injector configuration plays an important role on influencing the spray atomization and evaporation. In order to optimize the injector configuration to generate a better fuel spray, the further study to understand the effect of injector configuration is needed. In this study, the influence of the hole length to diameter ratio (L/D) on the fuel spray evaporation is investigated in a constant volume chamber under various operating conditions. The laser induced exciplex fluorescence (LIEF) technique is utilized to capture the vapor fluorescence signal of fuel spray. The fuel sprays with the fuel temperature ranging from 45°C to 85°C and ambient pressure ranging from 20kPa to 100kPa are investigated to study the influences of superheated degree (SD) on the spray evaporation.
Technical Paper

Influence of Component Proportion on Multi-Component Surrogate Fuel Spray Characteristics under Subcooled and Superheated Conditions

2019-12-19
2019-01-2250
Good comprehension of multi-component fuel spray behavior is essential for the improved performance of GDI engines. In this study, the spray characteristics of three distinct multi-component surrogate fuels with various proportions of n-pentane, iso-octane, and n-decane were investigated using multiple diagnostics including macroscopic imaging, planar laser Mie-scattering, and phase doppler interferometry (PDI). These surrogate fuels were used to mimic different distillation characteristics of regular unleaded gasoline with different vaporization behaviors. Test measurements show that under subcooled test conditions, the spray geometry is mainly influenced by dynamic viscosity. On the contrary, under superheated test conditions, spray geometry is controlled by the specific component of fuel which has the highest vapor pressure. A triangular methodology is created to evaluate the influence of component proportion on spray characteristics.
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Transient Flow Field Behavior after End of Spray Injection Under Different Injection and Flash Boiling Conditions

2023-09-29
2023-32-0092
The continuous improvement of gasoline direct injection (GDI) engine is largely attributed to the enhanced understanding of air-fuel mixing and combustion processes. This work investigates the transient behavior of the ambient flow fields of hexane spray using the combined diagnostics of fluorescent particle image velocimetry (FPIV) and mie scattering. A hybrid analysis approach is proposed to investigate the residual effect of spray injection on ambient flow fields, including flow similarity measurement, entrainment velocity calculation, and vortex strength detection. The work investigates the residual effect under different injection durations, injection pressure, and flash-boiling extent of the spray, and unveils correlation between vortex strength and the endurance of the residual effect.
X