Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Technology Selection for Optimal Power Distribution Efficiency in a Turboelectric Propulsion System

Turboelectric propulsion is a technology that can potentially reduce aircraft noise, increase fuel efficiency, and decrease harmful emissions. In a turbo-electric system, the propulsor (fans) is no longer connected to the turbine through a mechanical connection. Instead, a superconducting generator connected to a gas turbine produces electrical power which is delivered to distributed fans. This configuration can potentially decrease fuel burn by 10% [1]. One of the primary challenges in implementing turboelectric electric propulsion is designing the power distribution system to transmit power from the generator to the fans. The power distribution system is required to transmit 40 MW of power from the generator to the electrical loads on the aircraft. A conventional aircraft distribution cannot efficiently or reliably transmit this large amount of power; therefore, new power distribution technologies must be considered.
Technical Paper

A System Dynamics Approach for Dynamic Uncertainty Assessment in a PAV Design Environment

One the most critical barriers to the advancement of Personal Air Vehicles in today's market environment is that the technological capabilities can never seem to outweigh the risks associated with financing such an endeavor. To address such a need, a system dynamics approach with the capability to model the uncertainties in the supply chain is presented in this paper. The overall modeling framework is first presented and the modeling process of the various relevant elements, such as demand prediction and manufacturer analysis, is then described. The aim of this research is ultimately to assess the viability of a next-generation aircraft program beyond the static confines of a net present value approach, through the inclusion of dynamic events and uncertainties that can occur throughout the life-cycle of the aircraft.
Technical Paper

A Probabilistic Approach to Multivariate Constrained Robust Design Simulation

Several approaches to robust design have been proposed in the past. Only few acknowledged the paradigm shift from performance based design to design for cost. The incorporation of economics in the design process, however, makes a probabilistic approach to design necessary, due to the inherent ambiguity of assumptions and requirements as well as the operating environment of future aircraft. The approach previously proposed by the authors, linking Response Surface Methodology with Monte Carlo Simulations, has revealed itself to be cumbersome and at times impractical for multi-constraint, multi-objective problems. In addition, prediction accuracy problems were observed for certain scenarios that could not easily be resolved. Hence, this paper proposes an alternate approach to probabilistic design, which is based on a Fast Probability Integration technique.
Technical Paper

Implementation of a Physics-Based Decision-Making Framework for Evaluation of the Multidisciplinary Aircraft Uncertainty

In today's business climate, aerospace companies are more than ever in need of rational methods and techniques that provide insights as to the best strategies which may be pursued for increased profitability and risk mitigation. However, the use of subjective, anecdotal decision-making remains prevalent due to the absence of analytical methods capable of capturing and forecasting future needs. Negotiations between airframe and engine manufacturers could benefit greatly from a structured environment that facilitates efficient, rational, decision-making. Creation of such an environment can be developed through a parametric physics-based, stochastic formulation that uses Response Surface Equations as meta-models to expedite the process.
Technical Paper

Formulation, Realization, and Demonstration of a Process to Generate Aerodynamic Metamodels for Hypersonic Cruise Vehicle Design

The desire to facilitate the conceptual and preliminary design of hypersonic cruise vehicles has created the need for simple, fast, versatile, and trusted aerodynamic analysis tools. Metamodels representing physics-based engineering codes provide instantaneous access to calibrated tools. Nonlinear transformations extend the capability of metamodels to accurately represent a large design space. Independence, superposition, and scaling properties of the hypersonic engineering method afford an expansive design space without traditional compounding penalties. This one-time investment results in aerodynamic and volumetric metamodels of superior quality and versatility which may be used in many forms throughout early design. As a module, they can be an integral component within a multidisciplinary analysis and optimization package. Aerodynamic polars they produce may provide performance information for mission analysis.
Technical Paper

Preliminary Assessment of the Economic Viability of a Family of Very Large Transport Configurations

A family of Very Large Transport (VLT) concepts were studied as an implementation of the affordability aspects of the Robust Design Simulation (RDS) methodology which is based on the Integrated Product and Process Development (IPPD) initiative that is sweeping through industry. The VLT is envisioned to be a high capacity (600 to 1000 passengers), long range (∼7500 nm), subsonic transport. Various configurations with different levels of technology were compared, based on affordability issues, to a Boeing 747-400 which is a current high capacity, long range transport. The varying technology levels prompted a need for an integration of a sizing/synthesis (FLOPS) code with an economics package (ALCCA). The integration enables a direct evaluation of the added technology on a configuration economic viability.