Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Fuel-Borne Catalyst Assisted DPF regeneration on a Renault Truck MD9 Engine Outfitted with SCR

2007-07-23
2007-01-1934
Diesel urban buses and refuse trucks are part of the particulate emissions sources that affect city air quality. In order to reduce particulate pollutant emissions, a development program has been carried out based on a Euro 4 engine with a DPF technology. Currently, for Euro 4 compliance, SCR is the favoured technology. To avoid a completely new development, the Exoclean™ DPF system was located after the SCR. Catalyst. The severe operating conditions and the location of the DPF necessitated the development of an active system based on the association of a DPF and a Fuel-Borne Catalyst. A Renault Trucks MD9 engine was used. This work was funded by ADEME (French Agency for Environment and Energy Management). Due to severe stop and go duty cycles and the interest to fit the DPF downstream of the SCR, this study shows the benefit of using an active DPF with an FBC to ensure full regeneration even at low temperatures.
Technical Paper

In-Cylinder Combustion Visualization in an Auto-Igniting Gasoline Engine using Fuel Tracer- and Formaldehyde-LIF Imaging

2001-05-07
2001-01-1924
In an optical accessible 4-stroke engine laser-induced fluorescence (LIF) imaging measurements of fuel tracer (3-pentanone) and formaldehyde were performed during the compression stroke and combustion. Formaldehyde (HCHO) is intermediately present at high concentrations within the cool flame and is burned later on when the “hot” combustion proceeds. It can be used as an internally generated tracer to observe the boundaries of the hot combustion zones. Despite the fact that a frequency-tripled Nd:YAG laser excites only weak transitions in the HCHO molecule, the high concentration (several thousands ppm) provide for sufficient signal intensity when detecting fluorescence above 395 nm. Using formaldehyde LIF, auto-ignition (occurring close to 356°ca) and the further development of combustion was observed.
Technical Paper

Coupling of a NOx Trap and a CDPF for Emission Reduction of a 6-Cylinder HD Engine

2004-06-08
2004-01-1945
To ensure overall optimisation of heavy duty engine performance (with the respect of NOx&PM future European and US emissions standards), the use of a high efficiency NOx after-treatment system such as a NOx trap appears to be necessary. But running in rich conditions, even for a short time, leads to a large increase of particulate emissions so that a particulate filter is required. A first investigation with a NOx-trap only has been carried out to evaluate and optimise the storage, destorage and reduction phases from the NOx conversion efficiency and fuel penalty trade-off. The equivalence ratio level, the fuel penalty and the temperature level of the NOx-trap have been shown as a key parameter. Respective DPF and LNA locations have been studied. The configuration with the NOx-trap upstream provides the best NOx / fuel penalty trade-off since it allows NOx slip reduction and does not disturb the rich pulses.
Technical Paper

Catalytic Filter Systems with Direct and Indirect Soot Oxidation Activity

2005-04-11
2005-01-0670
Diesel Particulate Filters (DPFs) need to be periodically regenerated in order to achieve efficient and safe vehicle operation. Under typical diesel exhaust conditions, this invariably requires the raising of the exhaust gas temperature by active means, up to the point that particulate (soot) oxidation can be self-sustained in the filter. In the present work the development path of an advanced catalytic filter technology is presented. Full scale optimized Catalytic Diesel Particulate Filters (CDPFs) are tested in the exhaust of a light-duty modern diesel engine in line with a Diesel Oxidation Catalyst (DOC). The management of the DOC-CDPF emission control system is facilitated by a virtual soot sensor in order to ensure energy-efficient operation of the emission control system.
Technical Paper

Towards CO and HC Aftertreatment Devices for the Next Generation of Diesel Engines

2008-06-23
2008-01-1543
The reduction of NOx emissions required by the future Euro 6 standards leads engine manufacturers to develop Diesel Homogeneous Charge Compression Ignition (HCCI) combustion processes. Because this concept allows reducing both NOx and particulates simultaneously, it appears as a promising way to meet the next environmental challenges. Unfortunately, HCCI combustion often increases CO and HC emissions. Conventional oxidation catalyst technologies, currently used for Euro 4 vehicles, may not be able to convert these emissions because of the saturation of active catalytic sites. As a result, such increased CO and HC emissions have to be reduced under standard levels using innovative catalysts or emergent technologies. The work reported in this paper has been conducted within the framework of the PAGODE project (PSA, IFP, Chalmers University, APTL, CRF, Johnson Matthey and Supelec) and financed by the European Commission.
Technical Paper

Validation of a Model and Development of a Simulator for Predicting the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0911
As demand for wall-flow Diesel Particulate Filters (DPF) increases, accurate predictions of DPF behavior, and in particular their pressure drop, under a wide range of operating conditions bears significant engineering applications. In this work, validation of a model and development of a simulator for predicting the pressure drop of clean and particulate-loaded DPFs are presented. The model, based on a previously developed theory, has been validated extensively in this work. The validation range includes utilizing a large matrix of wall-flow filters varying in their size, cell density and wall thickness, each positioned downstream of light or heavy duty Diesel engines; it also covers a wide range of engine operating conditions such as engine load, flow rate, flow temperature and filter soot loading conditions. The validated model was then incorporated into a DPF pressure drop simulator.
Technical Paper

Spatial Non-Uniformities in Diesel Particulate Trap Regeneration

2001-03-05
2001-01-0908
Diesel particulate trap regeneration is a complex process involving the interaction of phenomena at several scales. A hierarchy of models for the relevant physicochemical processes at the different scales of the problem (porous wall, filter channel, entire trap) is employed to obtain a rigorous description of the process in a multidimensional context. The final model structure is validated against experiments, resulting in a powerful tool for the computer-aided study of the regeneration behavior. In the present work we employ this tool to address the effect of various spatial non-uniformities on the regeneration characteristics of diesel particulate traps. Non-uniformities may include radial variations of flow, temperature and particulate concentration at the filter inlet, as well as variations of particulate loading. In addition, we study the influence of the distribution of catalytic activity along the filter wall.
Technical Paper

Multi-Functional Reactor for Emission Reduction of Future Diesel Engine Exhaust

2009-04-20
2009-01-0287
Future diesel emission control systems have to effectively operate under non-conventional low-temperature combustion engine operating conditions. In this work the research and development efforts for the realization of a Multi-Functional catalyst Reactor (MFR) for the exhaust of the upcoming diesel engines is presented. This work is based on recent advances in catalytic nano-structured materials synthesis and coating techniques. Different catalytic functionalities have been carefully distributed in the filter substrate microstructure for maximizing the direct and indirect (NO2-assisted) soot oxidation rate, the HC and CO conversion efficiency as well as the filtration efficiency. Moreover, a novel filter design has been applied to enable internal heat recovery capability by the implementation of heat exchange between the outlet and the inlet to the filter flow paths.
Technical Paper

A Methodology for the Fast Evaluation of the Effect of Ash Aging on the Diesel Particulate Filter Performance

2009-04-20
2009-01-0630
Establishing a certain maintenance-free time period regarding modern diesel exhaust emission control systems is of major importance nowadays. One of the most serious problems Diesel Particulate Filter (DPF) manufacturers face concerning system's durability is the performance deterioration due to the filter aging because of the accumulation of the ash particles. The evaluation of the effect of the ash aging on the filter performance is a time and cost consuming task that slows down the process of manufacturing innovative filter structures and designs. In this work we present a methodology for producing filter samples aged by accumulating ash produced by the controlled pyrolysis of oil-fuel solutions. Such ash particles bear morphological (size) and compositional similarity to ash particles collected from engine aged DPFs. The ash particles obtained are compared to those from real engine operation.
Technical Paper

Detailed Particulate Characterization from HCCI Combustion for Future DPF Development

2009-04-20
2009-01-1185
This paper presents the detailed characterization of particulate emissions from a NADI™ dual mode engine (HCCI at low load and conventional combustion at high load). Morphology, composition and chemical reactivity of the particulate matter generated on an engine running in HCCI mode have been specified and compared to the conventional mode reference. Results showed that HCCI combustion formed particles with a higher volatile organic fraction due to the relatively high level of HC generated by this kind of combustion. Advanced soot characterization emphasized that HCCI soot is oxidized at a slower reaction rate than conventional soot, but with a lower temperature. This last characteristic could partially compensate the poor continuous regeneration effect due to low NO2 emission levels observed in HCCI combustion. Microscopic observation and particle sizing did not show significant differences between HCCI and conventional soot.
Technical Paper

Retrofit Program of a EURO 1 and EURO 2 Urban Bus Fleet in La Rochelle, using the Ceria-based Fuel-borne Catalyst for Diesel Particulate Filter Regeneration (Phase #1)

2004-03-08
2004-01-0821
In urban areas, particulate emission from Diesel engines is one of the pollutants of most concern. As a result, particulate emission control from urban bus Diesel engines using particulate filter technology is being introducing in La Rochelle. The Diesel Particulate Filter (DPF) introduction on the existing urban bus fleet has been initiated by the CDA La Rochelle through a voluntary retrofit program. The class of urban bus to be retrofitted is based on EURO 1 and EURO 2 Diesel engines, using a standard European Diesel fuel with 300ppm of Sulphur content. In that case, the appropriated technology for DPF regeneration requires a very flexible strategy for DPF regeneration, such as the use of the Ceria-based Fuel-Borne Catalysts. The paper describes the practical approach developed to install and optimize the DPF System on the urban buses.
Technical Paper

The Air Assisted Direct Injection ELEVATE Automotive Engine Combustion System

2000-06-19
2000-01-1899
The purpose of the ELEVATE (European Low Emission V4 Automotive Two-stroke Engine) industrial research project is to develop a small, compact, light weight, high torque and highly efficient clean gasoline 2-stroke engine of 120 kW which could industrially replace the relatively big existing automotive spark ignition or diesel 4-stroke engine used in the top of the mid size or in the large size vehicles, including the minivan vehicles used for multi people and family transportation. This new gasoline direct injection engine concept is based on the combined implementation on a 4-stroke bottom end of several 2-stroke engine innovative technologies such as the IAPAC compressed air assisted direct fuel injection, the CAI (Controlled Auto-Ignition) combustion process, the D2SC (Dual Delivery Screw SuperCharger) for both low pressure engine scavenging and higher pressure IAPAC air assisted DI and the ETV (Exhaust charge Trapping Valve).
Technical Paper

SCIP Simplified Direct Injection for Low Emissions Small Two-Stroke Engines

1999-09-28
1999-01-3289
The IAPAC Direct fuel Injection (DI) system, developed by IFP, has already well proven its capability to reduce pollutants emissions and fuel consumption of 2-stroke engines. This crankcase Compressed Air Assisted Fuel Injection Process allowing the introduction of the fuel separately from the scavenging air, minimizes the fuel short-circuiting. In earlier works, results of the implementation of the IAPAC system on cylinder displacement from 125 cc to 400 cc have been presented in various papers. These first prototypes were all using a camshaft to drive the IAPAC DI poppet valve, which was considered as a limitation for applying this system to small displacement 2-stroke engines. The new SCIP™ system is no more using a camshaft neither driveshaft, or any electric power supply to drive the DI air assisted injection valve.
Journal Article

Smart Soot Sensor for Particulate Filter OBD

2013-04-08
2013-01-1334
In the frame of tighter emission requirements and environmental protection, future standards will soon lead to the use of an OBD soot sensor to monitor DPF leakage. Such a sensor will first be introduced in the US by MY 2015 and then in Europe for Euro 6.2 in 2017. The resistive ceramic sensing technology has been selected by most OEM as the most appropriate. The sensor collects the soot in a time cumulative manner and has an internal heater to clean the ceramic before each measurement sequence. The actual challenge of the hardware is to design a wide band collecting system with a high sensitivity and repeatability circuit processing. Electricfil has overcome major drawbacks of the resistive technology with an innovative sensor tip, with filtration features and a boosting electronic scheme. This sensor integrates internal diagnostic capability at power on and during operation.
Journal Article

Investigation of SCR Catalysts for Marine Diesel Applications

2017-03-28
2017-01-0947
Evolving marine diesel emission regulations drive significant reductions of nitrogen oxide (NOx) emissions. There is, therefore, considerable interest to develop and validate Selective Catalytic Reduction (SCR) converters for marine diesel NOx emission control. Substrates in marine applications need to be robust to survive the high sulfur content of marine fuels and must offer cost and pressure drop benefits. In principle, extruded honeycomb substrates of higher cell density offer benefits on system volume and provide increased catalyst area (in direct trade-off with increased pressure drop). However higher cell densities may become more easily plugged by deposition of soot and/or sulfate particulates, on the inlet face of the monolithic converter, as well as on the channel walls and catalyst coating, eventually leading to unacceptable flow restriction or suppression of catalytic function.
Journal Article

Experimental Study of Thermal Aging on Catalytic Diesel Particulate Filter Performance

2013-04-08
2013-01-0524
In this paper, a methodology is presented to study the influence of thermal aging on catalytic DPF performance using small scale coated filter samples and side-stream reactor technology. Different mixed oxide catalytic coating families are examined under realistic engine exhaust conditions and under fresh and thermally aged state. This methodology involves the determination of filter physical (flow resistance under clean and soot loaded conditions and filtration efficiency) and chemical properties (reactivity of catalytic coating towards direct soot oxidation). Thermal aging led to sintering of catalytic nanoparticles and to changes in the structure of the catalytic layer affecting negatively the filter wall permeability, the clean filtration efficiency and the pressure drop behavior during soot loading. It also affected negatively the catalytic soot oxidation activity of the catalyzed samples.
Journal Article

Performance Assessment of a Multi-Functional Reactor Under Conventional and Advanced Combustion Diesel Engine Exhaust Conditions

2011-04-12
2011-01-0606
Current progress in the development of diesel engines substantially contributes to the reduction of NOx and Particulate Matter (PM) emissions but will not succeed to eliminate the application of Diesel Particulate Filters (DPFs) in the future. In the past we have introduced a Multi-Functional Reactor (MFR) prototype, suitable for the abatement of the gaseous and PM emissions of the Low Temperature Combustion (LTC) engine operation. In this work the performance of MFR prototypes under both conventional and advanced combustion engine operating conditions is presented. The effect of the MFR on the fuel penalty associated to the filter regeneration is assessed via simulation. Special focus is placed on presenting the performance assessment in combination with the existing differences in the morphology and reactivity of the soot particles between the different modes of diesel engine operation (conventional and advanced). The effect of aging on the MFR performance is also presented.
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging

2000-03-06
2000-01-1016
Compliance with future emission standards for diesel powered vehicles is likely to require the deployment of emission control devices, such as particulate filters and DeNOx converters. Diesel emission control is merging with powertrain management and requires deep knowledge of emission control component behavior to perform effective system level integration and optimization. The present paper focuses on challenges associated with a critical component of diesel emission control systems, namely the diesel particulate filter (DPF), and provides a fundamental description of the transient filtration/loading, catalytic/NO2-assisted regeneration and ash-induced aging behavior of DPF's.
X