Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Cylinder- and Cycle Resolved Particle Formation Evaluation to Support GDI Engine Development for Euro 6 Targets

Combustion of premixed stoichiometric charge is free of soot particle formation. Consequently, the development of direct injection (DI) spark ignition (SI) engines aims at providing premixed charge to avoid or minimize soot formation in order to meet particle emissions targets. Engine development methods not only need precise engine-out particle measurement instrumentation but also sensors and measurement techniques which enable identification of in-cylinder soot formation sources under all relevant engine test conditions. Such identification is made possible by recording flame radiation signals and with analysis of such signals for premixed and diffusion flame signatures. This paper presents measurement techniques and analysis methods under normal engine and vehicle test procedures to minimize sooting combustion modes in transient engine operation.
Technical Paper

Personal Vehicles With Auto-Body Shielding of the Drive Assembly-External Noise Reduction and Internal Noise

An efficient method for the reduction of vehicle noise is to close the engine compartment in a soundtight manner. By this means, the sound radiation from the power unit, which has main influence on the vehicle's exterior noise, can be reduced in an economic way. Furthermore, the increased suppression on the impulsive high frequency noise is subjectively recognized as an additional advantage. However, a large scale use of an encapsulation demands for proper cooling of the engine and, with respect to interior noise, a deterioration of passenger comfort must be avoided. In two different vehicles three kinds of engine enclosures have been tested. It is demonstrated that thermal problems within the enclosure can be avoided by an appropriate design. In addition, with some development of the cooling system, sufficient cooling rate can be provided.