Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

3-D Computations to Improve Combustion in a Stratified-Charge Rotary Engine Part IV: Modified Geometries

1993-03-01
930679
A three-dimensional model for a direct injection stratified-charge rotary engine has been employed to study two modifications to the pocket geometry of the engine. In one modification, a pocket is located towards the leading edge of the rotor and is shown to produce recirculation within the pocket and faster burning. In the second modification, a two pocket rotor with two injectors and two spark plugs is studied. It appears that this should result in better utilization of the chamber air. It also appears that both modifications rhould result in higher efficiency of the direct-injected stratifiedcharge rotary engine. However extensive computations are required before a final conclusion is reached and before specific recommendations can be made.
Technical Paper

Fuel Distribution Effects on the Combustion of a Direct-injection Stratified-Charge Engine

1995-02-01
950460
Simultaneous fuel distribution images (by shadowgraph and laser-induced fluorescence) and cylinder pressure measurements are reported for a combusting stratified-charge engine with a square cup in the head at 800 RPM and light load for two spark locations with and without swirl. Air-assisted direct-injection occurred from 130°-150° after bottom dead center (ABDC) and ignition was at 148° ABDC. The engine is ported and injection and combustion take place every 6th cycle. The complicated interaction of the squish, fuel/air jet, square cup, spark plug geometry and weak tumble gives rise to a weak crossflow toward the intake side of the engine with no swirl, but toward the exhaust side in the presence of strong swirl, skewing the spray slightly to that side.
Technical Paper

Additive Effects on Atomization and Evaporation of Diesel Fuel Under Engine Conditions

1997-02-24
970795
The objective of this work was to establish whether two detergent-type additives(A and B) influence the drop size and evaporation of two Diesel fuels (1 and 2) under Diesel engine conditions. Two experiments were performed: visualization of liquid and vapor fuel by the exciplex technique in a motored single-cylinder engine and measurement of the Sauter mean diameter, total drop cross sectional area and total drop volume by laser diffraction in a spray chamber. The same Diesel injector and pump system were used in the two experiments. The engine tests were carried out using a high aromatic content fuel (1) particularly suited for the exciplex studies. These studies showed that additive A yielded a lower vapor signal than additive B, which in turn gave a lower vapor signal than untreated fuel. Spray chamber results were obtained for both fuel 1 and 2. Additive A reduced the evaporation of fuel 1 whereas additive B gave a smaller and less consistent affect.
Technical Paper

2-D Visualization of a Hollow-Cone Spray in a Cup-in-Head, Ported, I.C. Engine

1989-02-01
890315
Two dimensional visualization of a pulsating, hollow-cone spray was performed in a motored, ported, high swirl, cup-in-head I.C. engine, using exciplex-forming dopants in the fuel, which produced spectrally separated fluorescence from the liquid and vapor phases. Illumination was by a laser sheet approximately 200 µm thick from a frequency tripled Nd:YAG laser, and image acquisition was by a 100 × 100 pixel diode array camera interfaced to a personal computer. Liquid and vapor phase fuel distributions are reported for engine speeds of 800 rpm and 1600 rpm, over a crankangle range spanning the injection event and subsequent evaporation and mixing. The beginning of injection was at 33° BTDC at 800 rpm and 47° BTDC at 1600 rpm. At 800 rpm, the spray angle is narrower than the 60° poppet angle, as expected from previous observations in a near-quiescent spray chamber.
Technical Paper

Cycle-Resolved Velocity and Turbulence Measurements in an IC Engine With Combustion

1986-03-01
860320
Laser Doppler velocimetry has been used to make cycle-resolved velocity and turbulence measurements in a homogeneous-charge, spark-ignition engine. The engine had a ported intake and disc-shaped chamber with a compression ratio of 8 to 1. It was operated at a speed of 1200 rpm and with a TDC swirl number of 4. A stoichiometric propane-air mixture was used, and ignition was near the wall. The velocity measurements were made at three spatial locations at the midpoint of the clearance height. Tests were made to determine whether the presence of the flame affected the accuracy of the velocity measurements. It was found that the ensemble-averaged mean velocity shows a small deviation, and the rms fluctuation intensity is significantly influenced, but the effects appear to be confined to the flame zone. Data rates were sufficiently high in the preflame and postflame regions to determine the velocity history in each cycle (cycle resolved).
Technical Paper

Three-Dimensional Visualization of Premixed-Charge Engine Flames: Islands of Reactants and Products; Fractal Dimensions; and Homogeneity

1988-02-01
881635
The structure of turbulent flames was examined in a premixed-charge, spark-ignition ported engine using a three-dimensional visualization technique with 10 ns time resolution and 350 µm best spatial resolution. The engine had a pancake chamber, a compression ratio of 8, a TDC swirl number of 4 and was operated at 300, 1200 and 2400 rpm with stoichiometric and lean propane/air mixtures. The second and third harmonic beams of an Nd-YAG laser (532 nm and 355 nm), along with the two strongest beams (first Stokes (683 nm) and first anti-Stokes (436 nm)) from a hydrogen Raman shifter pumped by the second harmonic were used to create four parallel laser sheets each of less than 300 microns thickness. The laser sheets were passed through a transparent quartz ring in the cylinder head parallel to the piston top with vertical separations between successive sheets ranging from 1.5 to 0.9 mm.
Technical Paper

Cycle-Resolved Velocity and Turbulence Measurements Near the Cylinder Wall of a Firing S.I. Engine

1986-10-01
861530
Laser Doppler velocimetry has been used to make cycle-resolved velocity and turbulence measurements in a homogeneous-charge, spark-ignition engine. The engine had a ported intake and disc-shaped chamber with a compression ratio of 7.5 to 1. It was operated at a speed of 1200 rpm and with a TDC swirl number of 4. A stoichiometric propane-air mixture was used, and ignition was near the wall. Measurements of the tangential velocity component were made in both firing and non-firing cycles at nine spatial locations along a radius 180 degrees downstream of the spark. The radial velocity component was also measured at four of the locations. All measurements were made in the center of the clearance height. Tangential component measurements were made as close as 0.5mm from the cylinder wall, and the radial component was measured as close as 1.5mm from the wall.
Technical Paper

2-D Visualization of Liquid Fuel injection in an Internal Combustion Engine

1987-11-01
872074
A sheet of laser light from a frequency-doubled Nd-YAG laser (λ = 532 nm) approximately 150 μm thick is shone through the cylinder of a single cylinder internal combustion engine. The light scattered by the fuel spray is collected through a quartz window in the cylinder and is imaged on a 100 × 100 diode array camera. The signal from the diode array is then sent to a microcomputer for background subtraction and image enhancement. The laser pulse is synchronized with the crank shaft of the engine so that a picture of the spray distribution within the engine at different times during injection and the penetration and development of the spray may be observed. The extent of the spray at different positions within the chamber is determined by varying the position and angle of the laser sheet with respect to the piston and the injector.
Technical Paper

Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine - SP-715

1987-02-01
870454
Flame fronts were examined in a premixed-charge, spark-ignition, ported engine using a two-dimensional visualization technique with 10 nanoseconds time resolution and 200 microns best spatial resolution. The engine had a pancake chamber, a compression ratio of 8, a TDC swirl number of 4 and was operated at 300 to 3000 rpm with stoichiometric and lean propane/air mixtures. The measurements were made far from, and near to, the cylinder wall. A pulsed laser sheet was passed through the engine and the light scattered by sub-micron TiO2 or ZrO2 seeding particles was collected by a 100 x 100 diode array with fields of view of 1 cm x 1 cm, 2 cm x 2 cm, and 9 cm x 9 cm. The thickness of the flame front is as small as, or smaller than, the 200 micron best resolution of the measurements thus confirming that premixed-charge engine turbulent flames generally appear to be wrinkled laminar flames.
Technical Paper

A Study of Velocities and Turbulence Intensities Measured in Firing and Motored Engines

1987-02-01
870453
Laser Doppler velocimetry was used to make cycle-resolved velocity and turbulence measurements under motoring and firing conditions in a ported homogeneous charge S.I. engine. The engine had a flat pancake chamber with a compression ratio of 7.5. In one study, the effect of the intake velocity on TDC turbulence intensity was measured at 600, 1200, and 1800 rpm with three different intake flow rates at each speed. The TDC swirl ratio ranged from 2 to 6. The TDC turbulence intensities were found to be relatively insensitive to the intake velocity, and tended to scale more strongly with engine speed. For the combustion measurements, the engine was operated at 600, 1200, and 2400 rpm on stoichiometric and lean propane-air mixtures. Velocity measurements were made in swirling and non-swirling flows at several spatial locations on the midplane of the clearance height. The TDC swirl ratio was about 4. The measurements were made ahead, through, and behind the flame.
Technical Paper

On the Feasibility of Quantitative, Single-Shot, Spontaneous Raman Imaging in an Optically Accessible Engine Cylinder

1999-10-25
1999-01-3537
Two-Dimensional, single-shot spontaneous Raman measurements of methane concentration were performed in an optically accessible engine after direct injection with the use of modified air-assisted injector. The spatial resolution of the measurements was determined by the thickness of the laser sheet which was 0.8 mm. The error in the methane number density measurement was determined by the noise in the intensified camera output and was 16% of pure methane number density at the experimental conditions. Effective suppression of the stray light background was the main experimental difficulty. Satisfactory results were acquired only when the spark plug was substituted by a plug covered with a velvet-like, black piece of cloth. These preliminary results show that, for the specific engine configuration, fast mixing of the charge yields a very mild stratification after the end of injection.
Technical Paper

Application of Two-Color Particle Image Velocimetry to a Firing Production Direct-Injection Stratified-Charge Engine

1999-03-01
1999-01-1111
A two-color Particle Image Velocimetry (PIV) technique has been applied for the first time to a firing, production, three-cylinder, two-stroke, direct-injection stratified-charge engine operated under realistic conditions. In comparison to single color PIV, two-color PIV can resolve the directional ambiguity of the velocity by cross-correlating two digitized photographic images of a particle-seeded flow field, acquired sequentially at two different light wavelengths. Such an approach is essential in complex, a priori unknown, flow fields, such as those of most I.C. engines. To gain optical access to the combustion chamber, the engine head was equipped with two optical windows in such a way that its original geometry was practically undisturbed. Although the field of view was relatively small, it covered a critical area of the combustion chamber. The measurements were made in the plane perpendicular to the engine longitudinal axis, within the crank angle range of 70 to 10 degrees BTDC.
X