Refine Your Search

Topic

Search Results

Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2012-11-01
CURRENT
J398_201211
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Rated (Advertised) Fuel Capacity—Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2005-03-24
HISTORICAL
J398_200503
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Standardization of Color and Verbiage for Fuel Inlet Closures

2006-11-06
HISTORICAL
J2785_200611
This SAE Recommended Practice was developed to standardize fuel inlet closure colors and verbiage by fuel type primarily for passenger car and truck applications, but it can be applied to marine, industrial, lawn and garden, and other similar applications. See Section 4, Table 1 for a list of specified colors, and text by fuel type.
Standard

Requirements for Built-in Service Port for On-Board Diagnostics

2020-03-11
CURRENT
J2744_202003
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations: • Evaporative System Certifications Canister Loading and Purging • End-of-line Testing System Integrity • Service (e.g. OBD MIL on) Leak Location and Repair Verification • In-Use Compliance Testing Canister Loading and Purging • Inspection/Maintenance Testing System Integrity and Purge Check
Standard

Requirements for Built-In Service Port for On Board Diagnostics

2008-08-11
HISTORICAL
J2744_200808
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations: • Evaporative System Certifications Canister Loading and Purging • End-of-line Testing System Integrity • Service (e.g. OBD MIL on) Leak Location and Repair Verification • In-Use Compliance Testing Canister Loading and Purging • Inspection/Maintenance Testing System Integrity and Purge Check
Standard

Fuel Filler Pipe Assembly Design Practice to Meet Low Evaporative Emission Requirements

2012-08-14
CURRENT
J2599_201208
This SAE Recommended Practice covers design and evaluation of the entire gasoline filler pipe assembly used on cars and light trucks with respect to compliance with CARB (California Air Resources Board) LEV II (meeting or exceeding EPA Tier 2 and EU Stage-5 evaporative emissions requirements). It is limited to an assembly which is joined to the fuel tank using either a hose, Quick Connect Coupling, or a grommet type sealing device. The Design Practice covers the filler cap, filler pipe, filler pipe assembly to tank hose, and filler pipe assembly to tank grommet or spud. It includes recommendations for design of components and assemblies intended to perform successfully in evaporative emission SHED (Sealed Housing for Evaporative Determination) tests, based on best practices known at the time of release.
Standard

Fuel Filler Pipe Assembly Design Practice to Meet Low Evaporative Emission Requirements

2019-09-11
WIP
J2599
This SAE Recommended Practice covers design and evaluation of the entire gasoline filler pipe assembly used on cars and light trucks with respect to compliance with CARB (California Air Resources Board) LEV II (meeting or exceeding EPA Tier 2 and EU Stage-5 evaporative emissions requirements). It is limited to an assembly which is joined to the fuel tank using either a hose, Quick Connect Coupling, or a grommet type sealing device. The Design Practice covers the filler cap, filler pipe, filler pipe assembly to tank hose, and filler pipe assembly to tank grommet or spud. It includes recommendations for design of components and assemblies intended to perform successfully in evaporative emission SHED (Sealed Housing for Evaporative Determination) tests, based on best practices known at the time of release.
Standard

Standard for Protective Covers for Gasoline Fuel Line Tubing

2013-05-28
CURRENT
J2027_201305
This SAE Standard includes performance requirements for protective covers for flexible, non-metallic fuel tubing. Ultimate performance of the protective cover may be dependent on the interaction of the fuel tubing and protective cover. Therefore, it is recommended that tubing and cover combinations be tested as an assembly, where appropriate, to qualify to this document.
Standard

FILLER PIPES AND OPENINGS OF MOTOR VEHICLE FUEL TANKS

1976-12-01
HISTORICAL
J1140_197612
This Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

FILLER PIPES AND OPENINGS OF MOTOR VEHICLE FUEL TANKS

1980-03-01
HISTORICAL
J1140_198003
This recommended practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

FILLER PIPES AND OPENINGS OF MOTOR VEHICLE FUEL TANKS

1988-02-01
HISTORICAL
J1140_198802
This recommended practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

Filler Pipes and Openings of Motor Vehicle Fuel Tanks

2000-04-04
HISTORICAL
J1140_200004
This SAE Recommended Practice was developed primarily for gasoline-powered passenger car and truck applications but may be used in marine, industrial, and similar applications where refueling vapor recovery is required.
Standard

FUEL TANK FILLER CAP AND CAP RETAINER

1977-06-01
HISTORICAL
J829C_197706
This standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

FUEL TANK FILLER CAP AND CAP RETAINER

1988-02-01
HISTORICAL
J829_198802
This standard was developed primarily for passenger car and truck applications for the sizes indicated, but it may be used in marine, industrial, and similar applications.
Standard

Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

2004-11-17
HISTORICAL
J1737_200411
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
Standard

Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

2013-05-14
HISTORICAL
J1737_201305
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
Standard

Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

2019-08-26
CURRENT
J1737_201908
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls, as well as through "microleaks" at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which elements of a test fuel that permeate through the walls of a test specimen and migrate through the interfaces are transported by a controlled flow of dry nitrogen to a point where they are measured. That measurement point is a device, such as a canister containing activated charcoal or other means of collection or accumulation where the hydrocarbon losses are then measured by weight change or analyzed by some other suitable means.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2007-04-23
HISTORICAL
J285_200704
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2019-04-29
CURRENT
J285_201904
This SAE Recommended Practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with spark ignition (SI) engines and compression ignition (CI) engines for land vehicles. Current legal definitions only distinguish between “Unleaded Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
Standard

Dispenser Nozzle Spouts for Liquid Fuels Intended for Use with Spark Ignition and Compression Ignition Engines

2012-05-31
HISTORICAL
J285_201205
This SAE recommended practice provides standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzles that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and Compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between “UNLEADED Fuel” and “All Other Types of Fuel.” These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
X