Refine Your Search

Topic

Author

Search Results

Journal Article

Design and Operation of a Brake and Throttle Robot

2009-04-20
2009-01-0429
This paper describes the design and implementation of the SEA, Ltd. Brake and Throttle Robot (BTR). Presented are the criteria used in the initial design and the development and testing of the BTR, as well as some test results achieved with the device. The BTR is designed for use in automobiles and light trucks. It is based on a servomotor driven ballscrew, which in turn operates either the brake or accelerator. It is easily portable from one vehicle to another and compact enough to fit even smaller vehicles. The BTR is light enough so as to have minimal effect on the measurement of vehicle parameters. The BTR is designed for use as a stand-alone unit or as part of a larger control system such as the Automated Test Driver (ATD) yet allows for the use of a test driver for safety, as well as test selection, initiation, and monitoring. Installation in a vehicle will be described, as well as electronic components that support the BTR.
Technical Paper

Repeatability and Bias Study on the Vehicle Inertia Measurement Facility (VIMF)

2009-04-20
2009-01-0447
Representative vehicle inertial characteristics are important parameters for the development of motor vehicles and the proper operation of on-board systems. The Vehicle Inertia Measurement Facility (VIMF) measures vehicle center of gravity location, principal moments of inertia, and the roll/yaw product of inertia. It is important to understand the VIMF’s accuracy and repeatability, as well as the underlying methodology and assumptions, when performing tests or using the results of the test. This study reports on a repeatability analysis performed at the lower and upper limits of the VIMF. Each test performed is a complete drive-on/drive-off test. The test sequence involves the repeatability evaluation of several different machine configurations. Ten complete tests are performed for each vehicle. To better address the possibility of measurement bias, the design and verification of a calibration fixture for inertial characteristics is presented.
Technical Paper

Vehicle Dynamics Modeling and Validation for the 2003 Ford Expedition with ESC using ADAMS View

2009-04-20
2009-01-0453
The paper discusses the development of a model of the 2003 Ford Expedition using ADAMS View and its validation with experimental data. The front and rear suspensions are independent double A-arm type suspensions modeled using rigid links and ideal joints. The suspension springs and shock absorbers are modeled as force elements. The plots comparing the experimental tests and the simulation results are shown in this paper. Quasi-static roll and bounce tests are used to validate the suspension characteristics of the model while the Sine with Dwell and Slowly Increasing Steer maneuvers are used to validate the vehicle handling and tire-road interaction characteristics of the model. This paper also details the incorporation of an ESC model, originally developed by Kinjawadekar et al. [2] for CarSim, with the ADAMS model. The ESC is modeled in Simulink and co-simulated with the ADAMS vehicle model. Plots validating the ESC model with experimental data are also included.
Journal Article

Development of a Roll Stability Control Model for a Tractor Trailer Vehicle

2009-04-20
2009-01-0451
Heavy trucks are involved in many accidents every year and Electronic Stability Control (ESC) is viewed as a means to help mitigate this problem. ESC systems are designed to reduce the incidence of single vehicle loss of control, which might lead to rollover or jackknife. As the working details and control strategies of commercially available ESC systems are proprietary, a generic model of an ESC system that mimics the basic logical functionality of commercial systems was developed. This paper deals with the study of the working of a commercial ESC system equipped on an actual tractor trailer vehicle. The particular ESC system found on the test vehicle contained both roll stability control (RSC) and yaw stability control (YSC) features. This work focused on the development of a reliable RSC software model, and the integration of it into a full vehicle simulation (TruckSim) of a heavy truck.
Technical Paper

Vehicle to Vehicle Interaction Maneuvers Choreographed with an Automated Test Driver

2009-04-20
2009-01-0440
Modern passenger cars are being equipped with advanced driver assistance systems such as lane departure warning, collision avoidance systems, adaptive cruise control, etc. Testing for operation and effectiveness of these warning systems involves interaction between vehicles. While dealing with multiple moving vehicles, obtaining discriminatory results is difficult due to the difficulty in minimizing variations in vehicle separation and other parameters. This paper describes test strategies involving an automated test driver interacting with another moving vehicle. The autonomous vehicle controls its state (including position and speed) with respect to the target vehicle. Choreographed maneuvers such as chasing and overtaking can be performed with high accuracy and repeatability that even professional drivers have difficulty achieving. The system is also demonstrated to be usable in crash testing.
Technical Paper

Vehicle Dynamics Modeling and Validation of the 2003 Ford Expedition with ESC using CarSim

2009-04-20
2009-01-0452
The paper discusses the development of a vehicle dynamics model and model validation of the 2003 Ford Expedition in CarSim. The accuracy of results obtained from simulations depends on the realism of the model which in turn depends on the measured data used to define the model parameters. The paper describes the tests used to measure the vehicle data and also gives a detailed account of the methodology used to determine parameters for the CarSim Ford Expedition model. The vehicle model was validated by comparing simulation results with experimental testing. Bounce and Roll tests in CarSim were used to validate the suspension and steering kinematics and compliances. Field test data of the Sine with Dwell maneuver was used for the vehicle model validation. The paper also discusses the development of a functional electronic stability control system and its effect on vehicle handling response in the Sine with Dwell maneuver.
Technical Paper

Adaptation of TruckSim Models to Simulate Experimental Heavy Truck Hard Braking Test Data Under Various Levels of Brake Disablement

2010-10-05
2010-01-1920
This research focuses on the development and performance of analytical models to simulate a tractor-semitrailer in straight-ahead braking. The simulations were modified and tuned to simulate full-treadle braking with all brakes functioning correctly, as well as the behavior of the tractor-semitrailer rig under full braking with selected brakes disabled. The models were constructed in TruckSim and based on a tractor-semitrailer used in dry braking performance testing. The full-scale vehicle braking research was designed to define limits for engineering estimates on stopping distance when Class 8 air-braked vehicles experience partial degradation of the foundation brake system. In the full scale testing, stops were conducted from 30 mph and 60 mph, with the combination loaded to 80,000 lbs (gross combined weight or GCW), half payload, and with the tractor-semitrailer unladen (lightly loaded vehicle weight, or LLVW).
Technical Paper

Validation and Enhancement of a Heavy Truck Simulation Model with an Electronic Stability Control Model

2010-04-12
2010-01-0104
Validation was performed on an existing heavy truck vehicle dynamics computer model with roll stability control (RSC). The first stage in this validation was to compare the response of the simulated tractor to that of the experimental tractor. By looking at the steady-state gains of the tractor, adjustments were made to the model to more closely match the experimental results. These adjustments included suspension and steering compliances, as well as auxiliary roll moment modifications. Once the validation of the truck tractor was completed for the current configuration, the existing 53-foot box trailer model was added to the vehicle model. The next stage in experimental validation for the current tractor-trailer model was to incorporate suspension compliances and modify the auxiliary roll stiffness to more closely model the experimental response of the vehicle. The final validation stage was to implement some minor modifications to the existing RSC model.
Technical Paper

Development of a Method to Assess Vehicle Stability and Controllability in Open and Closed-Loop Maneuvers

2010-04-12
2010-01-0111
This paper describes a method to evaluate vehicle stability and controllability when the vehicle operates in the nonlinear range of lateral dynamics. The method is applied to open-loop steering maneuvers as well as closed-loop path-following maneuvers. Although path-following maneuvers are more representative of real world driving intent, they are usually considered inappropriate for objective assessment because of repeatability and accuracy issues. The automated test driver (ATD) can perform path-following maneuvers accurately and with good repeatability. This paper discusses the usefulness of application of the automated test drivers and path-following maneuvers. The dynamic mode of instability is not directly obtained from measurable outputs such as yawrate and lateral acceleration as in open-loop maneuvers. A few metrics are defined to quantify deviation from desired or ideal behavior in terms of observed “unexpected” lateral force and moment.
Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Technical Paper

Establishing Occupant Response Metrics on a Roll Simulator

2012-04-16
2012-01-0099
This paper presents the results of an in-depth study of the measurement of occupant kinematic response on the S-E-A Roll Simulator. This roll simulator was built to provide an accurate and repeatable test procedure for the evaluation of occupant protection and restraint systems during roll events within a variety of occupant compartments. In the present work this roll simulator was utilized for minimum-energy, or threshold type, rollover events of recreational off-highway vehicles (ROVs). Input profiles for these tests were obtained through a separate study involving autonomous full vehicle tests [1]. During simulated roll events anthropomorphic test device (ATD) responses were measured using on-board high speed video, an optical three-dimensional motion capture system (OCMS) and an array of string potentiometers.
Technical Paper

Validation of a Roll Simulator for Recreational Off-Highway Vehicles

2012-04-16
2012-01-0241
A two-degree-of-freedom Roll Simulator has been developed to study the occupant kinematics of Recreational Off-Highway Vehicles (ROVs). To validate the roll simulator, test data was collected on a population of ROVs on the market today. J-turn maneuvers were performed to find the minimum energy limits required to tip up the vehicles. Two sets of tests were performed: for the first set, 10 vehicles were tested, where the motion was limited by safety outriggers to 10-15 degrees of roll; and for the second set, three of these vehicles were re-tested with outriggers removed and the vehicle motion allowed to reach 90 degrees of roll. These quarter-turn rollover tests were performed autonomously using an Automatic Steering Controller (ASC) and a Brake and Throttle Robot (BTR). Lateral and longitudinal accelerations as well as roll rate and roll angle were recorded for all tests.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Simulation Results from a Model of a Tractor Trailer Vehicle Equipped with Roll Stability Control

2010-04-12
2010-01-0098
In 2007, a software model of a Roll Stability Control (RSC) system was developed based on test data for a Volvo tractor at NHTSA's Vehicle Research and Test Center (VRTC). This model was designed to simulate the RSC performance of a commercially available Electronic Stability Control (ESC) system. The RSC model was developed in Simulink and integrated with the available braking model (TruckSim) for the truck. The Simulink models were run in parallel with the vehicle dynamics model of a truck in TruckSim. The complete vehicle model including the RSC system model is used to simulate the behavior of the actual truck and determine the capability of the RSC system in preventing rollovers under different conditions. Several simulations were performed to study the behavior of the model developed and to compare its performance with that of an actual test vehicle equipped with RSC.
Technical Paper

Measured Vehicle Center-of-Gravity Locations - Including NHTSA's Data Through 2008 NCAP

2010-04-12
2010-01-0086
This paper is a printed listing of public domain vehicle center-of-gravity (CG) location measurements conducted on behalf of the National Highway Traffic Safety Administration (NHTSA). This paper is an extension of the 1999 SAE paper titled “Measured Vehicle Inertia Parameters - NHTSA's Data Through November 1998” ( 1 ). The previous paper contained data for 496 vehicles. This paper includes data for 528 additional vehicles tested as part of NHTSA's New Car Assessment Program (NCAP) for year 2001 through year 2008 ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ). The previous data included center-of-gravity location and mass moments-of-inertia for nearly all of the entries. The NCAP involves only the CG location measurements; so the vehicles listed in this paper do not have inertia data. This paper provides a brief discussion of the entries provided in the tabular listings as well as the accuracy of CG height measurements.
Journal Article

Semitrailer Torsional Stiffness Data for Improved Modeling Fidelity

2011-09-13
2011-01-2163
Vehicle dynamics models employed in heavy truck simulation often treat the semitrailer as a torsionally rigid member, assuming zero deflection along its longitudinal axis as a moment is applied to its frame. Experimental testing, however, reveals that semitrailers do twist, sometimes enough to precipitate rollover when a rigid trailer may have remained upright. Improving the model by incorporating realistic trailer roll stiffness values can improve assessment of heavy truck dynamics, as well as an increased understanding of the effectiveness of stability control systems in limit handling maneuvers. Torsional stiffness measurements were conducted by the National Highway Traffic Safety Administration (NHTSA) for eight semitrailers of different types, including different length box vans, traditional and spread axle flat beds, and a tanker.
Technical Paper

Modeling of a 6×4 Tractor and Trailers for Use in Real Time Hardware in the Loop Simulation for ESC Testing

2013-04-08
2013-01-0693
According to NHTSA's 2011 Traffic Safety Facts [1], passenger vehicle occupant fatalities continued the strong decline that has been occurring recently. In 2011, there were 21,253 passenger vehicles fatalities compared to 22,273 in 2010, and that was a 4.6% decrease. However; large-truck occupant fatalities increased from 530 in 2010 to 635 in 2011, which is a 20% increase. This was a second consecutive year in which large truck fatalities have increased (9% increase from 2009 to 2010). There was also a 15% increase in large truck occupant injuries from 2010. Moreover, the fatal crashes involving large trucks increased by 1.9%, in contrast to other-vehicle-occupant fatalities that declined by 3.6% from 2010. The 2010 accident statistics NHTSA's report reveals that large trucks have a fatal accident involvement rate of 1.22 vehicles per 100 million vehicle miles traveled compared to 1.53 for light trucks and 1.18 for passenger cars.
Journal Article

The Design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for Military Vehicles

2013-04-08
2013-01-0696
This paper describes the mechanical design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for wheeled military vehicles. This is a facility used to measure quasi-static suspension and steering system properties as well as tire vertical static stiffness. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. The axle frame holds wheel pads (representing the ground plane) for each wheel. Specific design considerations are presented on the wheel pads and the measurement system used to measure wheel center motion. The constraints on the axle frames are in the form of a simple mechanism that allows roll and bounce motion while constraining all other motions. An overview of the design is presented along with typical results.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Journal Article

Advanced Control Strategies for a Roll Simulator - A Feedback Linearization Technique Explored

2013-04-08
2013-01-0683
This paper presents a feedback linearization control technique as applied to a Roll Simulator. The purpose of the Roll Simulator is to reproduce in-field rollovers of ROVs and study occupant kinematics in a laboratory setting. For a system with known parameters, non-linear dynamics and trajectories, the feedback linearization algorithm cancels out the non-linearities such that the closed-loop dynamics behave in a linear fashion. The control inputs are computed values that are needed to attain certain desired motions. The computed values are a form of inverse dynamics or feed-forward calculation. With increasing system eigenvalue, the controller exhibits greater response time. This, however, puts a greater demand on the translational actuator. The controller also demonstrates that it is able to compensate for and reject a disturbance in force level.
X