Refine Your Search

Author

Affiliation

Search Results

Journal Article

Pedestrian Lower Extremity Response and Injury: A Small Sedan vs. A Large Sport Utility Vehicle

2008-04-14
2008-01-1245
Vehicle front-end geometry and stiffness characteristics have been shown to influence pedestrian lower extremity response and injury patterns. The goal of this study is to compare the lower extremity response and injuries of post mortem human surrogates (PMHS) tested in full-scale vehicle-pedestrian impact experiments with a small sedan and a large sport utility vehicle (SUV). The pelves and lower limbs of six PMHS were instrumented with six-degree-of-freedom instrumentation packages. The PMHS were then positioned laterally in mid-stance gait and subjected to vehicle impact at 40 km/h with either a small sedan (n=3) or a large SUV (n=3). Detailed descriptions of the pelvic and lower extremity injuries are presented in conjunction with global and local kinematics data and high speed video images. Injured PMHS knee joints reached peak lateral bending angles between 25 and 85 degrees (exceeding published injury criteria) at bending rates between 1.1 deg/ms and 3.7 deg/ms.
Technical Paper

Pelvic Injuries in Side Impact Collisions: A Field Accident Analysis and Dynamic Tests on Isolated Pelvic Bones

1997-11-12
973322
The accidentological studies dealing with automotive side collisions suggest that the pelvis is very vulnerable. Car manufacturers are more and more concerned with the protection of the occupant in lateral impact, but there is a lack of knowledge of the behavior of the pelvic bony structure and of its biomechanical tolerances. This knowledge however is essential in order to optimize protection devices and car structures with regard to the security of the occupants. The main goal of this study is thus two-fold: First, a field accident analysis was carried out in order to document the lesions and the injury mechanisms encountered in lateral impact. The accident database of the Laboratory of Accidentology and Biomechanics (LAB) was used and a sample of 219 injured occupants sustaining 381 injuries in lateral collision enables to evaluate the most frequent injuries and their location. Those injuries were also analyzed with regard to the car characteristics.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

A Normalization Technique for Developing Corridors from Individual Subject Responses

2004-03-08
2004-01-0288
This paper presents a technique for developing corridors from individual subject responses contained in experimental biomechanical data sets. Force-deflection response is used as an illustrative example. The technique begins with a method for averaging human subject force-deflection responses in which curve shape characteristics are maintained and discontinuities are avoided. Individual responses sharing a common characteristic shape are averaged based upon normalized deflection values. The normalized average response is then scaled to represent the given data set using the mean peak deflection value associated with the set of experimental data. Finally, a procedure for developing a corridor around the scaled normalized average response is presented using standard deviation calculations for both force and deflection.
Technical Paper

Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Occupant Protection

2001-03-05
2001-01-0721
This paper discusses struck-side occupant thoracic response to side-impact loading and the requirements of a sled system capable of reproducing the relevant motions of a laterally impacted vehicle. A simplified viscoelastic representation of a thorax is used to evaluate the effect of the door velocity-time profile on injury criteria and on the internal stress state of the thorax. Simulations using a prescribed door velocity-time profile (punch impact) are contrasted against simulations using a constant-velocity impact (Heidelberg-type impact). It is found that the stress distribution and magnitude within the thorax, in addition to the maximum thorax compression and viscous response, depend not only on the door-occupant closing velocity, but also on the shape of the door velocity-time profile throughout the time of contact with the occupant. A sled system capable of properly reproducing side-impact door and seat motion is described.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Parametric study of side impact thoracic injury criteria using the MADYMO human body model

2001-06-04
2001-06-0182
This paper presents a computational study of the effects of three parameters on the resulting thoracic injury criteria in side impacts. The parameters evaluated are a) door velocity-time (V-t) profile, b) door interior padding modulus, and c) initial door-to-occupant offset. Regardless of pad modulus, initial offset, or the criterion used to assess injury, higher peak door velocity is shown to correspond with more severe injury. Injury outcome is not, however, found to be sensitive to the door velocity at the time of first occupant contact. A larger initial offset generally is found to result in lower injury, even when the larger offset results in a higher door velocity at occupant contact, because the increased offset results in contact later in the door V-t profile - closer to the point at which the door velocity begins to decrease. Cases of contradictory injury criteria trends are identified, particularly in response to changes in the pad modulus.
Technical Paper

Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests

2003-03-03
2003-01-0160
This paper compares restrained Hybrid III and THOR thoracic kinematics and cadaver injury outcome in 30° oblique frontal and in full frontal sled tests. Peak shoulder belt tension, the primary source of chest loading, changed by less than four percent and peak chest resultant acceleration changed by less than 10% over the 30° range tested. Thoracic kinematics were likewise insensitive to the direction of the collision vector, though they were markedly different between the two dummies. Mid-sternal Hybrid III chest deflection, measured by the standard sternal potentiometer and by supplemental internal string potentiometers, was slightly lower (∼10%) in the oblique tests, but the oblique tests produced a negligible increase in lateral movement of the sternum. In an attempt to understand the biofidelity of these dummy responses, a series of 30-km/h human cadaver tests having several collision vectors (0°, 15°, 30°, 45°) was analyzed.
Technical Paper

The Influence of Pelvis Design on the Lateral Pelvic Impact Response of the Polar-II Pedestrian Dummy

2006-04-03
2006-01-0682
Previous studies utilizing the Polar-II pedestrian dummy have suggested the need for a more biofidelic pelvis design in order to improve the overall dummy response kinematics. The current Polar-II dummy pelvis is a rigid steel structure. A preliminary version of a modified deformable pelvis equipped with sensors for measuring internal deflection and load has been designed. The goal of this study was to assess the biofidelity of these two pelves in full-scale tests with the Polar-II dummy that mimic lateral pelvic impact tests on PMHS (post-mortem human subjects) reported in the literature. The force - time, deflection - time, and force - deflection histories were compared to new PMHS response corridors determined using a normalization technique. In all tests with both pelves, the initial response (i.e., the first 3 ms to 5 ms following initial dummy - impactor contact) appeared to be totally determined by the mechanical behavior of the flesh.
Technical Paper

Elimination of Thoracic Muscle Tensing Effects for Frontal Crash Dummies

2005-04-11
2005-01-0307
Current crash dummy biofidelity standards include the estimated effects of tensing the muscles of the thorax. This study reviewed the decision to incorporate muscle tensing by examining relevant past studies and by using an existing mathematical model of thoracic impacts. The study finds evidence that muscle tensing effects are less pronounced than implied by the biofidelity standard response corridors, that the response corridors were improperly modified to include tensing effects, and that tensing of other body regions, such as extremity bracing, may have a much greater effect on the response and injury potential than tensing of only the thoracic musculature. Based on these findings, it is recommended that muscle tensing should be eliminated from thoracic biofidelity requirements until there is sufficient information regarding multi-region muscle tensing response and the capability to incorporate this new data into a crash dummy.
Technical Paper

A Method for the Experimental Investigation of Acceleration as a Mechanism of Aortic Injury

2005-04-11
2005-01-0295
Rupture of the thoracic aorta is a leading cause of rapid fatality in automobile crashes, but the mechanism of this injury remains unknown. One commonly postulated mechanism is a differential motion of the aortic arch relative to the heart and its neighboring vessels caused by high-magnitude acceleration of the thorax. Recent Indy car crash data show, however, that humans can withstand accelerations exceeding 100 g with no injury to the thoracic vasculature. This paper presents a method to investigate the efficacy of acceleration as an aortic injury mechanism using high-acceleration, low chest deflection sled tests. The repeatability and predictability of the test method was evaluated using two Hybrid III tests and two tests with cadaver subjects. The cadaver tests resulted in sustained mid-spine accelerations of up to 80 g for 20 ms with peak mid-spine accelerations of up to 175 g, and maximum chest deflections lower than 11% of the total chest depth.
Technical Paper

Thoracic Response to Dynamic, Non-Impact Loading from a Hub, Distributed Belt, Diagonal Belt, and Double Diagonal Belts

2004-11-01
2004-22-0022
This paper presents thoracic response corridors developed using fifteen post-mortem human subjects (PMHS) subjected to single and double diagonal belt, distributed, and hub loading on the anterior thorax. We believe this is the first study to quantify the force-deflection response of the same thorax to different loading conditions using dynamic, non-impact, restraint-like loading. Subjects were positioned supine on a table and a hydraulic master-slave cylinder arrangement was used with a high-speed materials testing machine to provide controlled chest deflection at a rate similar to that experienced by restrained PMHS in a 48-km/h sled test. All loading conditions were tested at a nominally non-injurious level initially. When the battery of non-injurious tests was completed, a single loading condition was used for a final, injurious test (nominal 40% chest deflection).
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

The Contribution of Pre-impact Spine Posture on Human Body Model Response in Whole-body Side Impact

2014-11-10
2014-22-0014
The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay.
Technical Paper

Structural and Material Changes in the Aging Thorax and Their Role in Crash Protection for Older Occupants

2005-11-09
2005-22-0011
The human body undergoes a variety of changes as it ages through adulthood. These include both morphological (structural) changes (e.g., increased thoracic kyphosis) and material changes (e.g., osteoporosis). The purpose of this study is to evaluate structural changes that occur in the aging bony thorax and to assess the importance of these changes relative to the well-established material changes. The study involved two primary components. First, full-thorax computed tomography (CT) scans of 161 patients, age 18 to 89 years, were analyzed to quantify the angle of the ribs in the sagittal plane. A significant association between the angle of the ribs and age was identified, with the ribs becoming more perpendicular to the spine as age increased (0.08 degrees/year, p=0.012). Next, a finite element model of the thorax was used to evaluate the importance of this rib angle change relative to other factors associated with aging.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 2: Injuries and Their Correlation with Engineering Parameters

2008-11-03
2008-22-0006
This paper describes the injuries generated during dynamic belt loading to a porcine model of the 6-year-old human abdomen, and correlates injury outcomes with measurable parameters. The test fixture produced transverse, dynamic belt loading on the abdomen of 47 immediately post-mortem juvenile swine at two locations (upper/lower), with penetration magnitudes ranging from 23% – 65% of the undeformed abdominal depth, with and without muscle tensing, and over a belt penetration rate range of 2.9 m/s – 7.8 m/s. All thoracoabdominal injuries were documented in detail and then coded according to the Abbreviated Injury Scale (AIS). Observed injuries ranged from AIS 1 to AIS 4. The injury distribution matched well the pattern of injuries observed in a large sample of children exposed to seatbelt loading in the field, with most of the injuries in the lower abdomen.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 1: Development of an Experimental Model and Quantification of Structural Response to Dynamic Belt Loading

2006-11-06
2006-22-0001
The abdomen is the second most commonly injured region in children using adult seat belts, but engineers are limited in their efforts to design systems that mitigate these injuries since no current pediatric dummy has the capability to quantify injury risk from loading to the abdomen. This paper develops a porcine (sus scrofa domestica) model of the 6-year-old human's abdomen, and then defines the biomechanical response of this abdominal model. First, a detailed abdominal necropsy study was undertaken, which involved collecting a series of anthropometric measurements and organ masses on 25 swine, ranging in age from 14 to 429 days (4-101 kg mass). These were then compared to the corresponding human quantities to identify the best porcine representation of a 6-year-old human's abdomen. This was determined to be a pig of age 77 days, and whole-body mass of 21.4 kg.
Technical Paper

Investigations on the Belt-to-Pelvis Interaction in Case of Submarining

2006-11-06
2006-22-0003
This study focuses on the phenomenon of lap belt slip on the iliac spines of the pelvis, commonly named “submarining ”. The first objective was to compare the interaction between the pelvis and the lap belt for both dummies and Post Mortem Human Subjects (PMHS). The second objective was to identify parameters influencing the lap belt hooking by the pelvis. For that purpose, a hydraulic test device was developed in order to impose the tension and kinematics of the lap belt such that they mimic what occurs in frontal car crashes. The pelvis was firmly fixed on the frame of this sub-system test-rig, while the belt anchorages were mobile. Fourteen tests on four Post-Mortem Human Subjects (PMHS) and fifteen tests on the THOR NT, Hybrid III 50th and Hybrid III 95th percentile dummies were carried out. The belt tension was kept constant while a dynamic rotation was imposed on the belt anchorages.
Technical Paper

Side Impact: Influence of Impact Conditions and Bone Mechanical Properties on Pelvic Response Using a Fracturable Pelvis Model

2006-11-06
2006-22-0004
This study aimed at determining the influence of impact conditions and occupant mechanical properties on pelvic response in side impact. First, a fracturable pelvis model was developed and validated against dynamic tests on isolated pelvic bones and on whole cadavers. By coupling a fixed cortical bone section thickness within a single subject's pelvis and across the population with a parametric material law for the pelvic bone, this model reproduced the pelvic response and tolerance variation among individuals. Three material laws were also identified to represent fragile, medium and strong pelvic bones for the 50th percentile male. With this model, the influence of impact mass, velocity and surface shape on pelvic response was examined. Results indicated that the shape difference between four main impactors reported in the literature has little effect on the pelvic response.
X