Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests

2003-03-03
2003-01-0160
This paper compares restrained Hybrid III and THOR thoracic kinematics and cadaver injury outcome in 30° oblique frontal and in full frontal sled tests. Peak shoulder belt tension, the primary source of chest loading, changed by less than four percent and peak chest resultant acceleration changed by less than 10% over the 30° range tested. Thoracic kinematics were likewise insensitive to the direction of the collision vector, though they were markedly different between the two dummies. Mid-sternal Hybrid III chest deflection, measured by the standard sternal potentiometer and by supplemental internal string potentiometers, was slightly lower (∼10%) in the oblique tests, but the oblique tests produced a negligible increase in lateral movement of the sternum. In an attempt to understand the biofidelity of these dummy responses, a series of 30-km/h human cadaver tests having several collision vectors (0°, 15°, 30°, 45°) was analyzed.
Technical Paper

Thoracic Response to Dynamic, Non-Impact Loading from a Hub, Distributed Belt, Diagonal Belt, and Double Diagonal Belts

2004-11-01
2004-22-0022
This paper presents thoracic response corridors developed using fifteen post-mortem human subjects (PMHS) subjected to single and double diagonal belt, distributed, and hub loading on the anterior thorax. We believe this is the first study to quantify the force-deflection response of the same thorax to different loading conditions using dynamic, non-impact, restraint-like loading. Subjects were positioned supine on a table and a hydraulic master-slave cylinder arrangement was used with a high-speed materials testing machine to provide controlled chest deflection at a rate similar to that experienced by restrained PMHS in a 48-km/h sled test. All loading conditions were tested at a nominally non-injurious level initially. When the battery of non-injurious tests was completed, a single loading condition was used for a final, injurious test (nominal 40% chest deflection).
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Investigations on the Belt-to-Pelvis Interaction in Case of Submarining

2006-11-06
2006-22-0003
This study focuses on the phenomenon of lap belt slip on the iliac spines of the pelvis, commonly named “submarining ”. The first objective was to compare the interaction between the pelvis and the lap belt for both dummies and Post Mortem Human Subjects (PMHS). The second objective was to identify parameters influencing the lap belt hooking by the pelvis. For that purpose, a hydraulic test device was developed in order to impose the tension and kinematics of the lap belt such that they mimic what occurs in frontal car crashes. The pelvis was firmly fixed on the frame of this sub-system test-rig, while the belt anchorages were mobile. Fourteen tests on four Post-Mortem Human Subjects (PMHS) and fifteen tests on the THOR NT, Hybrid III 50th and Hybrid III 95th percentile dummies were carried out. The belt tension was kept constant while a dynamic rotation was imposed on the belt anchorages.
Technical Paper

Rear Seat Occupant Safety: Kinematics and Injury of PMHS Restrained by a Standard 3-Point Belt in Frontal Crashes

2008-11-03
2008-22-0012
Very little experimental research has focused on the kinematics, dynamics, and injuries of rear-seated occupants. This study seeks to develop a baseline response for rear-seated post mortem human surrogates (PMHS) in frontal crashes. Three PMHS sled tests were performed in a sled buck designed to represent the interior rear-seat compartment of a contemporary midsized sedan. All occupants were positioned in the right-rear passenger seat and subjected to simulated frontal crashes with an impact speed of 48 km/h. The subjects were restrained by a standard, rear seat, 3-point seat belt. The response of each subject was evaluated in terms of whole-body kinematics, dynamics, and injury. All the PMHS experienced excessive forward translation of the pelvis resulting in a backward rotation of the torso at the time of maximum forward excursion.
Technical Paper

Assessment of a Three-Point Restraint System with a Pre-tensioned Lap Belt and an Inflatable, Force-Limited Shoulder Belt

2011-11-07
2011-22-0007
This study investigates the performance of a 3-point restraint system incorporating an inflatable shoulder belt with a nominal 2.5-kN load limiter and a non-inflatable lap belt with a pretensioner (the “Airbelt”). Frontal impacts with PMHS in a rear seat environment are presented and the Airbelt system is contrasted with an earlier 3-point system with inflatable lap and shoulder belts but no load-limiter or pretensioners, which was evaluated with human volunteers in the 1970s but not fully reported in the open literature (the “Inflataband”). Key differences between the systems include downward pelvic motion and torso recline with the Inflataband, while the pelvis moved almost horizontally and the torso pitched forward with the Airbelt. One result of these kinematic differences was an overall more biomechanically favorable restraint loading but greater maximum forward head excursion with the Airbelt.
Technical Paper

Whole-body Kinematic and Dynamic Response of Restrained PMHS in Frontal Sled Tests

2006-11-06
2006-22-0013
The literature contains a wide range of response data describing the biomechanics of isolated body regions. Current data for the validation of frontal anthropomorphic test devices and human body computational models lack, however, a detailed description of the whole-body response to loading with contemporary restraints in automobile crashes.
Technical Paper

Whole-Body Response to Pure Lateral Impact

2010-11-03
2010-22-0014
The objective of the current study was to provide a comprehensive characterization of human biomechanical response to whole-body, lateral impact. Three approximately 50th-percentile adult male PMHS were subjected to right-side pure lateral impacts at 4.3 ± 0.1 m/s using a rigid wall mounted to a rail-mounted sled. Each subject was positioned on a rigid seat and held stationary by a system of tethers until immediately prior to being impacted by the moving wall with 100 mm pelvic offset. Displacement data were obtained using an optoelectronic stereophotogrammetric system that was used to track the 3D motions of the impacting wall sled; seat sled, and reflective targets secured to the head, spine, extremities, ribcage, and shoulder complex of each subject. Kinematic data were also recorded using 3-axis accelerometer cubes secured to the head, pelvis, and spine at the levels of T1, T6, T11, and L3. Chest deformation in the transverse plane was recorded using a single chestband.
X