Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Study of Emission and Combustion Characteristics of RME B100 Biodiesel from a Heavy Duty DI Diesel Engine

2007-01-23
2007-01-0074
A rapeseed methyl ester biodiesel RMEB100 was tested on a heavy duty DI diesel engine under steady state conditions. The combustion performance and exhaust emissions were measured and compared to a standard petroleum derived diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Particulates were collected and analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. A FTIR analysis system was deployed for gaseous hydrocarbon speciation, which is capable of speciating up to 65 species. The results showed a significant reduction in total particulate mass, particulate VOF, CO, THC and aldehydes when using RMEB100.
Technical Paper

Condensable and Gaseous Hydrocarbon Emissions and Their Speciation for a Real World SI Car Test

2007-01-23
2007-01-0062
Condensable and gaseous hydrocarbon emissions and speciation of the hydrocarbons have been investigated using a EURO1 emissions compliant SI (Spark Ignition) car. Exhaust gas samples were simultaneously collected upstream and downstream of the catalyst using a system containing cold ice trap, resin, particulate filter block and Teflon gas sampling bag. GC (Gas Chromatography) was employed to analyze for hydrocarbons and 16 of the more significant hydrocarbons are reported. The test was carried out using both cold start and hot start driving cycles. Results show that the benzene and toluene were major species emitted from the tailpipe under cold start conditions. Methylnaphthalene was a dominated hydrocarbon under hot start conditions. The cold start had significant influence on hydrocarbon emissions. The catalyst out benzene emissions for cold start was thirty times higher than that for hot start.
Technical Paper

Analysis of Driving Parameters and Emissions for Real World Urban Driving Cycles using an on-board Measurement Method for a EURO 2 SI car

2007-07-23
2007-01-2066
A FTIR in-vehicle on-road emission measurement system was installed in a EURO 2 emissions compliant SI car to investigate exhaust emissions under different urban traffic conditions. The real time fuel consumption and vehicle traveling speed was measured and logged. The temperatures were measured along the exhaust pipe so as to monitor the thermal characteristics and efficiency of the catalyst. Two real world driving cycles were developed with different traffic conditions. One (WP cycle) was located in a quiet area with few traffic interference and the other one (HPL cycle) was in a busy area with more traffic variations. The test car was pre-warmed before each test to eliminate cold start effect. The driving parameters were analyzed for two real world cycles. The WP cycle had higher acceleration rate, longer acceleration mode and shorter steady speed driving mode and thus harsher than the HPL cycle.
Technical Paper

The Use of a Water/Lube Oil Heat Exchanger and Enhanced Cooling Water Heating to Increase Water and Lube Oil Heating Rates in Passenger Cars for Reduced Fuel Consumption and CO2 Emissions During Cold Start.

2007-07-23
2007-01-2067
Lubricating oil takes all of the NEDC test cycle time to reach 90°C. Hence, this gives high friction losses throughout the test cycle, which leads to a significant increase in the fuel consumption. In real world driving, particularly in congested traffic, it is shown that lube oil warm-up is even slower than in the NEDC. Euro 1, 2 and 4 Ford Mondeo water and oil warm up rates in real world urban driving were determined and shown to be comparable with the results of Kunze et al. (2) for a BMW on the NEDC. This paper explores the use of forced convective heat exchange between the cooling water and the lube oil during the warm-up period. A technique of a step warm-up of the engine at 32 Nm at 2000 rpm (35% of peak power) was used and the engine lube oil and water temperature monitored. It was shown that the heat exchanger results in an increase in lube oil temperature by 4°C, which increased to 10°C if enhanced heat transfer to the water was used from an exhaust port heat exchanger.
Technical Paper

Study of thermal characteristics, fuel consumption and emissions during cold start using an on-board measuring method for SI car real world urban driving

2007-07-23
2007-01-2065
Exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. The test vehicle was a EURO 2 emission compliant SI car equipped with real time fuel consumption measurement and temperature measurement along the exhaust pipe across the catalyst allowing the matching of thermal characteristics to emission profiles and monitor fuel consumption. The temperature profile indicated that the light-off of the catalyst took about 150∼200 seconds. The warm up of the lubricating oil and coolant water required a longer time than the catalyst did. The impact of ambient temperatures on lubricating oil and coolant water warm ups was greater than that on the light-off of the catalyst. The heat loss and energy balance were calculated during the whole cycle period. The influence of cold start on fuel consumption was investigated.
Technical Paper

Evaluation of a FTIR Emission Measurement System for Legislated Emissions Using a SI Car

2006-10-16
2006-01-3368
A series of chassis dynamometer test trials were conducted to assess the performance of a Fourier Transform Infra Red (FTIR) system developed for on-road vehicle exhaust emissions measurements. Trials used a EURO 1 emission compliant SI passenger car which, alongside the FTIR, was instrumented to allow the routine logging of engine speed, road speed, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. The chassis dynamometer facility incorporated an ‘industry standard’ measurement system comprising MEXA7400 gas analyzer and CVS bag sampling which was the ‘benchmark’ for the evaluation of FTIR legislated gas-phase emissions (CO, NOx, THC and CO2) measurements. Initial steady state measurements demonstrated strong correlations for CO, NOx and THC (R2 of 0.99, 0.97 0.99, respectively) and a good correlation for CO2 (R2 = 0.92).
Technical Paper

Impact of Traffic Conditions and Road Geometry on Real World Urban Emissions Using a SI Car

2007-04-16
2007-01-0308
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction and uphill/downhill road, and thereby the impact of road topography on emissions. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst could be monitored. Different turning movements (driving events) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was run until hot stable operating conditions were achieved before each test, thereby negating cold start effects.
Technical Paper

Application of a Portable FTIR for Measuring On-road Emissions

2005-04-11
2005-01-0676
The objective of this work was the development of an on-road in-vehicle emissions measurement technique utilizing a relatively new, commercial, portable Fourier Transform Infra-Red (FTIR) Spectrometer capable of identifying and measuring (at approximately 3 second intervals) up to 51 different compounds. The FTIR was installed in a medium class EURO1 spark ignition passenger vehicle in order to measure on-road emissions. The vehicle was also instrumented to allow the logging of engine speed, road speed, global position, throttle position, air-fuel ratio, air flow and fuel flow in addition to engine, exhaust and catalyst temperatures. This instrumentation allowed the calculation of mass-based emissions from the volume-based concentrations measured by the FTIR. To validate the FTIR data, the instrument was used to measure emissions from an engine subjected to a real-world drive cycle using an AC dynamometer.
Technical Paper

Characterization of Regulated and Unregulated Cold Start Emissions for Different Real World Urban Driving Cycles Using a SI Passenger Car

2008-06-23
2008-01-1648
An in-vehicle FTIR emission measurement system was used to investigate the exhaust emissions under different real world urban driving conditions. Five different driving cycles were developed based on real world urban driving conditions including urban free flow driving, junction maneuver, congested traffic and moderate speed cruising. The test vehicle was a EURO 2 emission compliant SI car equipped with temperature measurement along the exhaust pipe across the catalyst and real time fuel consumption measurement system. Both regulated and non-regulated emissions were measured and analyzed for different driving cycles. All journeys were started from cold. The engine warm up features and emissions as a function of engine warm up for different driving conditions were investigated.
Technical Paper

Comparison of Particulate PAH Emissions for Diesel, Biodiesel and Cooking Oil using a Heavy Duty DI Diesel Engine

2008-06-23
2008-01-1811
An investigation was conducted into particulate PAH emissions from a heavy duty DI diesel engine using; a typical diesel fuel, 100% methyl ester derived from waste cooking oils, and 100% rapeseed oil supplied as fresh cooking oil. This study quantifies the particulate PAH levels emitted at two steady state load conditions, with comparison of the oxidation catalyst efficiency for the main species identified. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser engine, with emission compliance of EURO 2. Particulate samples were also analysed for VOF and carbon content. Both biofuels resulted in reductions in the most abundant particulate PAH species, particularly at the lower load condition. Larger species such as Benzo(a)anthracene, chrysene, benzo(b)fluoranthene and benzo (k)fluoranthene were detectable for all fuels upstream of the catalyst but were oxidized to near or below detection limits downstream of the catalyst.
Technical Paper

Comparison of Exhaust Emissions and Particulate Size Distribution for Diesel, Biodiesel and Cooking Oil from a Heavy Duty DI Diesel Engine

2008-04-14
2008-01-0076
Rape oil, as used in fresh cooking oil (FCO), and the methyl ester derived from waste cooking oil (WCOB100) were tested as 100% biofuels (B100) on a heavy duty DI diesel engine under steady state conditions. The exhaust emissions were measured and compared to those for conventional low sulphur (<50ppm) diesel fuel. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Euro2 Phaser Engine, fitted with an oxidation catalyst. The engine out gaseous emissions results for WCOB100 showed a large decrease in CO and HC emissions, but a small increase in NOx emissions compared to diesel. However, for FCO the CO and HC increased relative to WCOB100 and CO was higher than for diesel, indicating deterioration in fuel/air mixing. The particulate matter (PM) emissions for WCOB100 were similar to those for diesel at the 23kw condition, but greatly reduced at 47kw. The FCO produced higher engine out PM at both power conditions due to a higher volatile organic fraction (VOF).
Technical Paper

Improvements in Lubricating Oil Quality by an On Line Oil Recycler for a Refuse Truck Using in Service Testing

2001-03-05
2001-01-0699
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had lubricating oil deterioration and emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the oil quality and fuel and lubricating oil consumption on the same vehicles and engines with and without the on-line bypass oil recycler. Engine oils were sampled and analysed about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.
Technical Paper

The Influence of an Oil Recycler on Emissions with Oil Age for a Refuse Truck Using in Service Testing

2001-03-05
2001-01-0623
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 1 emissions compliance refuse trucks, fitted with Perkins Phazer 210Ti 6 litre turbocharged intercooled engines and coded as RT320 and RT321. These vehicles had emissions characteristics that were significantly different, in spite of their similar age and total mileage. RT321 showed an apparent heavier black smoke than RT320. Comparison was made with the emissions on the same vehicles and engines with and without the on-line bypass oil recycler. Engine exhaust emissions were measured about every 400 miles. Both vehicles started the test with an oil drain and fresh lubricating oil.
Technical Paper

Impact of Ambient Temperatures on VOC Emissions and OFP during Cold Start for SI Car Real World Urban Driving

2009-06-15
2009-01-1865
New EU environmental law requires 31 ozone precursor VOCs (Volatile Organic Compounds) to be measured for urban air quality control. In this study, 23 out of the 31 ozone precursor VOCs were measured at a rate of 0.5 HZ by an in-vehicle FTIR (Fourier Transform InfraRed) emission measurement system along with 15 other VOCs. The vehicle used was a EURO2 emission compliant SI car. The test vehicle was driven under real world urban driving conditions on the same route by the same driver on different days at different ambient temperatures. All the journeys were started from cold. The VOC emissions and OFP (Ozone Formation Potential) as a function of engine warm up and ambient temperatures during cold start were investigated. The exhaust temperatures were measured along with the exhaust emissions. The temperature and duration of light off of the catalyst for VOCs was monitored.
Technical Paper

Investigation of Regulated and Non-Regulated Cold Start Emissions using a EURO3 SI Car as a Probe Vehicle under Real World Urban Driving Conditions

2008-10-06
2008-01-2428
Regulated and non-regulated tailpipe exhaust emissions were measured under real world urban driving conditions using a set of in-vehicle FTIR emission measurement system, which is able to measure 65 emission components simultaneously at a rate of 0.5 Hz. A EURO3 emission compliant SI car was used as a probe vehicle. An urban driving cycle was used for the test and four repeated journeys were conducted. The results were compared to EU emissions legislation. The results show that the TWC needed approximately 200 seconds to reach full conversion efficiency. THC and NOx emissions exceeded the EURO 3 exhaust emission legislation. CO2 emissions were well above the type approval value of this type of the vehicle. Greenhouse gases (methane and nitrous oxide) and toxic hydrocarbons such as benzene were predominantly emitted during cold start period from 0 to 200 seconds of the engine start. The results had a reasonable repeatability for most of the emissions.
Technical Paper

Reduction of Exhaust Emissions by a Synthetic Lubricating Oil with Higher Viscosity Grade and Optimized Additive Package for a Heavy Duty DI Diesel Engine Test

2008-10-06
2008-01-2489
A 10W-50 G4 synthetic lubricating oil (EULUBE oil) was tested on a heavy duty DI diesel engine under two steady state conditions. The exhaust emissions were measured and compared to a 10W-30 CF semi-synthetic lubricating oil. The EULUBE oil contained the friction reduction additive to improve the fuel economy. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, with emission compliance of EURO 2, fitted with an oxidation catalyst. The exhaust samples were taken both upstream and downstream of the catalyst. Gaseous and particulates emissions were measured. Particulate size distribution was measured using ELPI and SMPS. The particulate samples were analysed for VOF, carbon and ash. A MEXA7100 gas analysis system was used for legislated gas analysis such as CO, CO2, NOx and total hydrocarbons. The results showed a significant reduction by synthetic lubricating oil in gaseous hydrocarbon emissions, total particulate mass, particulate carbon and ash.
Technical Paper

Comparison of Real World Emissions in Urban Driving for Euro 1-4 Vehicles Using a PEMS

2009-04-20
2009-01-0941
An on-board emission measurement system (PEMS), the Horiba OBS 1300, was installed in Euro 1-4 SI cars of the same model to investigate the impact of vehicle technology on exhaust emissions, under urban driving conditions with a fully warmed-up catalyst. A typical urban driving loop cycle was used with no traffic loading so that driver behavior without the influence of other traffic could be investigated. The results showed that under real world driving conditions the NOx emissions exceeded the legislated values and only at cruise was the NOx emissions below the legislated value. The higher NOx emissions during real-world driving have implications for higher urban Ozone formation. With the exception of the old EURO1 vehicle, HC and CO emissions were under control for all the vehicles, as these are dominated by cold start issues, which were not included in this investigation.
Technical Paper

Influence of Ambient Temperature on Cold-start Emissions for a Euro 1 SI Car Using In-vehicle Emissions Measurement in an Urban Traffic Jam Test Cycle

2005-04-11
2005-01-1617
The influence of ambient temperature on exhaust emissions for an instrumented Euro 1 SI car was determined for urban congested traffic conditions. In UK cities cold-starting vehicles directly into congested traffic conditions is a common occurrence that is not currently taken into account when modeling urban traffic pollution. In-vehicle emission samples were taken directly from the exhaust, upstream and downstream of the catalyst, using the bag sampling technique. The first bag was for the cold start emissions and approximately the first 1.1 km of travel. The following three bags were with a hotter catalyst. The cold start tests were conducted over a year, with ambient temperatures ranging from 2°C to 30°C. The results showed that CO emissions for the cold start were reduced by 70% downstream of the catalyst when the ambient temperature rose from 2°C to 30°C. The corresponding hydrocarbon emissions were reduced by 41% and NOx emissions were increased by 90%.
Technical Paper

Effects of an on Line Bypass Oil Recycler on Emissions with Oil Age for a Bus Using in Service Testing

2001-09-24
2001-01-3677
A method of cleaning lubricating oil on line was investigated using a fine bypass particulate filter followed by an infra red heater. Two bypass filter sizes of 6 and 1 micron were investigated, both filter sizes were effective but the one micron filter had the greatest benefit. This was tested on two nominally identical EURO 2 emissions compliance single decker buses, fitted with Cummins 6 cylinder 8.3 litre turbocharged intercooled engines and coded as Bus 4063 and 4070. These vehicles had emissions characteristics that were significantly different, in spite of their similar age and total mileage. Bus 4063 showed an apparent deterioration on emissions with time while Bus 4070 showed a stabilised trend on emissions with time for their baseline tests without the recycler fitted. Comparison was made with the emissions on the same vehicles and engines with and without the on-line bypass oil recycler. Engine exhaust emissions were measured about every 2000 miles.
Technical Paper

Study of the Emissions Generated at Intersections for a SI Car under Real World Urban Driving Conditions

2006-04-03
2006-01-1080
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst monitored could be included in the analysis. Different turning movements (driving patterns) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was hot stable running conditions before each test, thereby negating cold start effects. To demonstrate the influence of the junction on tail-pipe emissions and fuel consumption, distance based factors were determined that compared the intersection drive-through measurements with steady speed (state) runs. Fuel consumption was increased at intersections by a factor of 1.3∼5.9.
X