Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Continuous Load Adjustment Strategy of a Gasoline HCCI-SI Engine Fully Controlled by Exhaust Gas

2011-04-12
2011-01-1408
Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption. However, it is still confronted with the problem of its narrow operation range that covers only the light and medium loads. Therefore, to expand the operation range of HCCI, mode switching between HCCI combustion and transition SI combustion is necessary, which may bring additional problems to be resolved, including load fluctuation and increasing the complexity of control strategy, etc. In this paper, a continuously adjustable load strategy is proposed for gasoline engines. With the application of the strategy, engine load can be adjusted continuously by the in-cylinder residual gas fraction in the whole operation range. In this research, hybrid combustion is employed to bridge the gaps between HCCI and traditional SI and thus realize smooth transition between different load points.
Journal Article

Effects of Injection Timing on CAI Operation in a 2/4-Stroke Switchable GDI Engine

2011-08-30
2011-01-1773
A single cylinder direct injection gasoline engine has been developed and commissioned on a transient engine test bed in order to study different engine cycles and combustion modes with identical hardware and operating conditions. The engine can be operated in either 4-stroke cycle or 2-stroke cycle by means of an electro-hydraulic camless system. In addition, both spark ignition and controlled autoignition (CAI) combustion can be achieved. In this paper, effects of the injection timing on different CAI combustion modes are investigated, including the residual gas trapping and exhaust gas rebreathing CAI operations in 4-stroke mode, and also 2-stroke CAI operation, with a stoichiometric air fuel ratio and homogeneous charge used throughout. The performance and emission data are presented and analysed as a function of the injection timing. Results show that the charge cooling effect on the intake flow rate is dependent upon the in-cylinder temperature at the time of injection.
Technical Paper

Experiment and Analysis of a Direct Injection Gasoline Engine Operating with 2-stroke and 4-stroke Cycles of Spark Ignition and Controlled Auto-Ignition Combustion

2011-08-30
2011-01-1774
Over recent years, in order to develop more efficient and cleaner gasoline engines, a number of new engine operating strategies have been proposed and many of them have been studied on different engines but there is a lack of different comparison between various operating strategies. In this work, a single cylinder direct injection gasoline engine equipped with an electro-hydraulic valvetrain system has been commissioned and used to achieve seven different operation modes, which are 4-stroke throttle-controlled SI, 4-stroke intake valve throttled SI, 4-stroke positive valve overlap SI, 4-stroke negative valve overlap CAI, 4-stroke exhaust rebreathing CAI, 2-stroke CAI and 2-stroke SI. Their performance and emission characteristics are presented and discussed.
Technical Paper

Analysis of Gaseous and PM Emissions of 4-Stroke CAI/HCCI and SI Combustion in a DI Gasoline Engine

2013-04-08
2013-01-1549
Direct injection gasoline engines have the potential for improved fuel economy through principally the engine down-sizing, stratified charge combustion, and Controlled Auto Ignition (CAI). However, due to the limited time available for complete fuel evaporation and the mixing of fuel and air mixture, locally fuel rich mixture or even liquid fuel can be present during the combustion process of a direct injection gasoline engine. This can result in significant increase in UHC, CO and Particulate Matter (PM) emissions from direct injection gasoline engines which are of major concerns because of the environmental and health implications. In order to investigate and develop a more efficient DI gasoline engine, a camless single cylinder DI gasoline engine has been developed. Fully flexible electro-hydraulically controlled valve train was used to achieve spark ignition (SI) and Controlled Autoignition (CAI) combustion in both 4-stroke and 2-stroke cycles.
Journal Article

The Effects of Charge Homogeneity and Repeatability on Particulates Using the PLIF Technique in an Optical DISI Engine

2014-04-01
2014-01-1207
Abstract The work was concerned with visualisation of the charge homogeneity and cyclic variations within the planar fuel field near the spark plug in an optical spark ignition engine fitted with an outwardly opening central direct fuel injector. Specifically, the project examined the effects of fuel type and injection settings, with the overall view to understanding some of the key mechanisms previously identified as leading to particulate formation in such engines. The three fuels studied included a baseline iso-octane, which was directly compared to two gasoline fuels containing 10% and 85% volume of ethanol respectively. The engine was a bespoke single cylinder with Bowditch style optical access through a flat piston crown. Charge stratification was studied over a wide spectrum of injection timings using the Planar Laser Induced Fluorescence (PLIF) technique, with additional variation in charge temperature due to injection also estimated when viable using a two-line PLIF approach.
Journal Article

Effect of Valve Timing and Residual Gas Dilution on Flame Development Characteristics in a Spark Ignition Engine

2014-04-01
2014-01-1205
The goal of this research was to study and quantify the effect of exhaust valve timing and residual gas dilution on in-cylinder flow patterns, flame propagation and heat release characteristics in a spark ignition engine. Experiments were carried out in a recently developed single cylinder optical engine. Particle image velocimetry (PIV) was applied to measuring and evaluating the in-cylinder flow field. Detailed analysis of flame images combined with heat release data was presented for several engine operating conditions, giving insight into the combustion process in terms of visible flame area and flame expansion speed. Results from PIV measurement indicates that the limited alteration of the in-cylinder bulk flow could be observed with the variation of exhaust valve timing. The in-cylinder fluctuating kinetic energies and their Coefficient of Variations (COVs) decrease with the advance of the exhaust valve timing.
Technical Paper

The Influence of Intake Port and Pent-Roof Structures on Reversed Tumble Generation of a Poppet-Valved Two-Stroke Gasoline Engine

2014-04-01
2014-01-1130
Abstract In order to minimize short-circuiting of the intake charge in the poppet-valved 2-stroke engine, measures are taken to generate reversed tumble in the cylinder. In this study, five different types of intake ports and three types of pent-roof geometries were designed and analysed of their ability to generate and maintain reversed tumble flows by means of CFD simulation for their intake processes on a steady flow rig. Their flow characteristics were then assessed and compared to that of the vertical top-entry ports. Results show that the side-entry port designs can achieve comparatively high tumble intensity. The addition of flow deflectors inside the side-entry ports does not have much effect on the reversed tumble ratio. The top-entry ports have the highest flow coefficient among all the intake ports examined as well as producing strong reversed tumble.
Technical Paper

The Effect of Spark Ignition on the CAI Combustion Operation

2005-10-24
2005-01-3738
The present paper aims to investigate the influence of spark ignition on CAI combustion based on internal EGR strategy. Controlled Auto-ignition (CAI) combustion is facilitated in a Ricardo single cylinder engine with a pair of special camshafts, which valve lift and cam profile are modified to trap enough hot residuals. Operation regions and other detailed combustion characteristics of the CAI engine operation are analyzed and compared between pure CAI mode and the CAI mode with assisted spark ignition. The results show that spark ignition can play an important role in controlling CAI combustion ignition in low load boundary region. The low temperature chemical reaction process is shortened and the auto ignition timing is advanced due to the spark discharge. Meantime, lower fuel consumption and cycle-to-cycle variations can be achieved.
Technical Paper

An Experimental Study on HCCI Combustion in a Four-Stroke Gasoline Engine with Reduced Valve Lift Operations

2005-10-24
2005-01-3736
To achieve homogeneous charge compression ignition (HCCI) combustion in the range of low speeds and loads, special camshafts with low intake/exhaust cam lift and short intake/exhaust cam duration were designed. The camshafts were mounted in a Ricardo Hydra four-stroke single cylinder port fuel injection gasoline engine. HCCI combustion was achieved by controlling the amount of trapped residuals from previous cycle through negative valve overlap. The results show that indicated mean effective pressure (IMEP) depends on valve timings, engine speeds and lambda. Early exhaust valve closing (EVC) timings result in high residual fractions in the cylinder and low air mass sucked into the cylinder. As a result, combustion duration increases, IMEP and peak pressure decrease. However, pumping losses decrease. High engine speed has the similar effect on HCCI combustion characteristics as early EVC timings do. But inlet valve opening timings have slight effect on IMEP compared to EVC timings.
Technical Paper

Effects of Ignition Timing on CAI Combustion in a Multi-Cylinder DI Gasoline Engine

2005-10-24
2005-01-3720
Having achieved CAI-combustion in a 4-cylinder four-stroke gasoline DI engine the effects of ignition timing on the CAI combustion process were investigated through the introduction of spark. By varying the start of fuel injection, the effects on Indicated Specific values for NOx, HC, CO emissions and fuel consumption were investigated for CAI combustion. The CAI combustion process was then assisted by spark and three different ignition timings were studied. The effect on engine performance and the emission specific values were investigated further. The engine speed was maintained at 1500 rpm and lambda was kept constant at 1.2. It was found that with spark-assisted CAI, IMEP and ISNOx values increased as compared with typical CAI. ISHC values were lower for spark-assisted CAI as compared to typical CAI. Heat release data was studied to better understand this phenomenon.
Technical Paper

Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector

2006-04-03
2006-01-0206
The application of controlled auto-ignition (CAI) combustion in gasoline direct injection (GDI) engines is becoming of more interest due to its great potential of reducing both NOx emissions and fuel consumption. Injection timing has been known as an important parameter to control CAI combustion process. In this paper, the effect of injection timing on mixture and CAI combustion is investigated in a single-cylinder GDI engine with an air-assisted injector. The liquid and vapour phases of fuel spray were measured using planar laser induced exciplex fluorescence (PLIEF) technique. The result shows that early injection led to homogeneous mixture but late injection resulted in serious stratification at the end of compression. CAI combustion in this study was realized by using short-duration camshafts and early closure of the exhaust valves. During tests, the engine speed was varied from 1200rpm to 2400rpm and A/F ratio from stoichiometric to lean limit.
Technical Paper

Effects of Ethanol on Performance and Exhaust Emissions from a DI Spark Ignition Engine with Throttled and Unthrottled Operations

2014-04-01
2014-01-1393
Abstract In recent years, in order to develop more efficient and cleaner gasoline engines, a number of new engine operating strategies have been proposed and many have been studied on different engines but there is a lack of comparison between various operating strategies and alternative fuels at different SI modes. In this research, a single cylinder direct injection gasoline engine equipped with an electro-hydraulic valve train system has been commissioned and used to study and compare different engine operation modes. In this work, the fuel consumption, gaseous and particulate emissions of gasoline and its mixture with ethanol (E15 and E85) were measured and analysed when the engine was operated at the same load but with different load control methods by an intake throttle, reduced intake valve duration, and positive overlap.
Technical Paper

Comparison of Performance, Efficiency and Emissions between Gasoline and E85 in a Two-Stroke Poppet Valve Engine with Lean Boost CAI Operation

2015-04-14
2015-01-0827
Abstract Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Most research on CAI/HCCI combustion operations have been carried out in 4-stroke gasoline engines, despite it was originally employed to improve the part-load combustion and emission in the two-stroke gasoline engine. However, conventional ported two-stroke engines suffer from durability and high emissions. In order to take advantage of the high power density of the two-stroke cycle operation and avoid the difficulties of the ported engine, systematic research and development works have been carried out on the two-stroke cycle operation in a 4-valves gasoline engine. CAI combustion was achieved over a large range of operating conditions when the relative air/fuel ratio (lambda) was kept at one as measured by an exhaust lambda sensor.
Journal Article

The Performance Characteristics of an Production Oriented Air Hybrid Powertrain

2010-04-12
2010-01-0821
In a previous paper [ 1 ], the authors have proposed a cost effective air hybrid concept based on a proprietary intake system and cam profile switching (CPS) system [ 2 ]. It was shown through engine simulations that the pneumatic hybrid operation could be achieved with about 15% regenerative efficiency. The proposed air hybrid operation can be achieved with proven technologies and engine components and hence it represents a cost-effective, reliable and quick deployable solution for low carbon vehicles. In this work, a four-cylinder 2 litre diesel engine has been modelled to operate on refined air hybrid engine configurations and the braking and motoring performance of each configuration have been studied. Both air hybrid systems can be constructed with production technologies and incur minimum changes to the existing engine design.
Technical Paper

Combustion Characteristics of CAI Combustion with Alcohol Fuels

2010-04-12
2010-01-0843
Due to its potential for simultaneous improvement in fuel consumption and exhaust emissions, controlled autoignition (CAI) combustion has been subject to continuous research in the last several years. At the same time, there has been a lot of interest in the use of alternative fuels in order to reduce reliance on conventional fossil fuels. Therefore, this experimental study has been carried out to investigate the effect of alcohol fuels on the CAI combustion process and on the resulting engine performance. The experimental work was conducted on an optical single cylinder engine with an air-assisted injector. To achieve controlled autoignition, residual gas was trapped in the cylinder by using negative valve overlap and an intake air heater was used to ensure stable CAI combustion in the optical engine. Methanol, ethanol and blended fuels were tested and compared with the results of gasoline.
Technical Paper

CFD Study on Effects of Thermal and Residual Gas Inhomogeneous Distribution on Auto-ignition of Gasoline HCCI Combustion

2010-04-12
2010-01-0160
For a HCCI gasoline combustion engine controlled by burnt residual gas, management of the residual gas and thermal distribution in cylinder is a possible way to optimize the auto-ignition and combustion phasing. The management ability of intake valve on the distribution and its effects on auto-ignition are investigated via KIVA code. The thermal and composition inhomogeneous distribution is quantified as inhomogeneity. The results show that, the thermal inhomogeneous distribution correlates well with that of the residual gas. As the residual gas fraction increases, the residual gas fraction inhomogeneity and the temperature inhomogeneity tend to increase. The residual gas fraction, as well as the in-cylinder residual gas inhomogeneity and temperature inhomogeneity, increases greatly with earlier exhaust valve close timing. When the residual gas fraction is larger than 40%, late intake valve open timing leads to high in-cylinder inhomogeneity.
Technical Paper

Investigation of Split Injection in a Single Cylinder Optical Diesel Engine

2010-04-12
2010-01-0605
Over the last decade, the diesel engine has made dramatic progress in its performance and market penetration. However, in order to meet future emissions legislations, Nitrogen Oxides (NOx) and particulate matters' (PM) emissions will need to be reduced simultaneously. Nowadays researchers are focused on different combustion modes which can have a great potential for both low soot and low NOx. In order to achieve this, different injection strategies have been investigated. This study investigates the effects of split injection strategies with high levels of Exhaust Gas Recirculation (EGR) on combustion performance and emissions in a single-cylinder direct injection optical diesel engine. The investigation is focused on the effects of injection timing of split injection strategies. A Ricardo Hydra single-cylinder optical engine was used in which conventional experimental methods like cylinder pressure data, heat release analysis and exhaust emissions analysis were applied.
Technical Paper

Combustion and Emission Characteristics of a HCCI Engine Fuelled with Different n-Butanol-Gasoline Blends

2014-10-13
2014-01-2668
Biobutanol, i.e. n-butanol, as a second generation bio-derived alternative fuel of internal combustion engines, can facilitate the energy diversification in transportation and reduce carbon dioxide (CO2) emissions from engines and vehicles. However, the majority of research was conducted on spark-ignition engines fuelled with n-butanol and its blend with gasoline. A few investigations were focused on the combustion and exhaust emission characteristics of homogeneous charge compression ignition (HCCI) engines fuelled with n-butanol-gasoline blends. In this study, experiments were conducted in a single cylinder four stroke port fuel injection HCCI engine with fully variable valve lift and timing mechanisms on both the intake and exhaust valves. HCCI combustion was achieved by employing the negative valve overlap (NVO) strategy while being fueled with gasoline (Bu0), n-butanol (Bu100) and their blends containing 30% n-butanol by volume (Bu30).
Technical Paper

Effect of Flame Propagation on the Auto-Ignition Timing in SI-CAI Hybrid Combustion (SCHC)

2014-10-13
2014-01-2672
Abstract SCHC (SI-CAI hybrid combustion), also known as spark-assisted HCCI, has been proved to be an effective method to stabilize combustion and extend the operation range of high efficiency, low temperature combustion. The combustion is initiated by the spark discharge followed by a propagation of flame front until the auto-ignition of end-gas. Spark ignition and the spark timing can be used to control the combustion event. The goal of this research is to study the effect of flame propagation on the auto-ignition timing in SCHC by means of chemiluminescence imaging and heat release analysis based on an optical engine. With higher EGR (exhaust gas recirculation) rate, more fuel is consumed by the flame propagation and stronger correlation between the flame propagation and auto-ignition is observed.
Journal Article

Numerical Study of the Effect of Piston Shapes and Fuel Injection Strategies on In-Cylinder Conditions in a PFI/GDI Gasoline Engine

2014-10-13
2014-01-2670
Abstract SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to stabilize the hybrid combustion process, the port fuel injection (PFI) combined with gasoline direct injection (GDI) strategy is proposed in this study to form the in-cylinder fuel stratification to enhance the early flame propagation process and control the auto-ignition combustion process. The effect of bowl piston shapes and fuel injection strategies on the fuel stratification characteristics is investigated in detail using three-dimensional computational fluid dynamics (3-D CFD) simulations. Three bowl piston shapes with different bowl diameters and depths were designed and analyzed as well as the original flat piston in a single cylinder PFI/GDI gasoline engine.
X