Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Effect of Fuel Injection Pressure on Mixture Stratification in a GDI Engine - A CFD Analysis

2017-10-08
2017-01-2317
The mixture formation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, piston profile is such that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In these engines, fuel injection pressure and timing play an important role in creating a combustible mixture near the spark plug. Therefore, in this study, an attempt has been made to understand the effect of fuel injection pressure with single and split injection strategy on the mixture formation in a four-stroke, wall-guided GDI engine operating under stratified conditions by using computational fluid dynamics (CFD) analysis. Four fuel injection pressures viz., 90, 120, 150 and 180 bar are considered for the analysis.
Technical Paper

Effect of EGR on Performance and Emission Characteristics of a GDI Engine - A CFD Study

2017-09-04
2017-24-0033
Future stringent emission norms are impelling researchers to look for new emission control techniques. Today, gasoline direct injection (GDI) engines are becoming more popular because of high potential to reduce exhaust emissions over a wide operating load range, unlike conventional port fuel injection (PFI) engines. Also, turbocharged GDI engines allow engine downsizing with a certain restriction on compression ratio (CR) due to knocking tendency, thereby limiting the fuel economy. However, use of exhaust gas recirculation (EGR) delays combustion and lowers the knocking tendency which will aid in improving the fuel economy. Therefore, this study is aimed to evaluate the effect of EGR rate on the performance and emission characteristics of a two-liter turbocharged four-stroke GDI engine by computational fluid dynamics (CFD) analysis. For the analysis, the CR of 9.3 and the engine speed of 1000 rev/min., are selected.
Technical Paper

Effect of Mixture Distribution on Combustion and Emission Characteristics in a GDI Engine - A CFD Analysis

2017-09-04
2017-24-0036
Mixture distribution in the combustion chamber of gasoline direct injection (GDI) engines significantly affects combustion, performance and emission characteristics. The mixture distribution in the engine cylinder, in turn, depends on many parameters viz., fuel injector hole diameter and orientation, fuel injection pressure, the start of fuel injection, in-cylinder fluid dynamics etc. In these engines, the mixture distribution is broadly classified as homogeneous and stratified. However, with currently available engine parameters, it is difficult to objectively classify the type of mixture distribution. In this study, an attempt is made to objectively classify the mixture distribution in GDI engines using a parameter called the “stratification index”. The analysis is carried out on a four-stroke wall-guided GDI engine using computational fluid dynamics (CFD).
Technical Paper

Effect of Fuel Injector Location and Nozzle-Hole Orientation on Mixture Formation in a GDI Engine: A CFD Analysis

2018-04-03
2018-01-0201
Gasoline direct injection (GDI) engines have gained popularity in the recent times because of lower fuel consumption and exhaust emissions compared to that of the conventional port fuel injection (PFI) engine. But, in these engines, the mixture formation plays an important role which affects combustion, performance and emission characteristics of the engine. The mixture formation, in turn, depends on many factors of which fuel injector location and orientation are most important parameters. Therefore, in this study, an attempt has been made to understand the effect of fuel injector location and nozzle-hole orientation on the mixture formation, performance and emission characteristics of a GDI engine. The mixture stratification inside the combustion chamber is characterized by a parameter called “stratification index” which is based on average equivalence ratio at different zones in the combustion chamber.
Technical Paper

Effect of Piston Crown Shape on In-Cylinder Flow Characteristics in a Direct Injection Engine - A CFD Study

2013-11-27
2013-01-2797
In modern direct injection gasoline engines, air-fuel mixing has a strong influence on combustion and emission characteristics, which in turn largely depends on in-cylinder fluid motion. However, in-cylinder fluid motion dependent on many engine parameters viz., piston shape, engine speed, intake manifold orientation, compression ratio, fuel injection timing, duration, etc. Among them, piston shape has significant influence on the in-cylinder fluid motion. Therefore, this study aims on evaluating the effect of piston shape on in-cylinder flows in a direct injection engine using CFD. In this study, a single-cylinder, two-valve, four-stroke direct injection engine designed for two-wheeler application in India is considered for the analysis. ‘STAR-CD’ and és-ice’ are used for CFD analysis. Pressure boundary values obtained from measurements in the actual engine are employed. Two piston-shapes viz., flat and bowl types at wide-open-throttle under non-firing conditions are considered.
Technical Paper

CFD Prediction of Combustion on Direct Injection Diesel Engine with Two Different Combustion Chamber Configurations

2013-11-27
2013-01-2804
Direct injection diesel engines are used in both light duty and heavy duty vehicles because of higher thermal efficiency compared to SI engines. However, due to only short time available for fuel-air mixing, combustion process depends on proper mixing. As a result, DI Diesel engine emits more NOx and soot into the atmosphere. Therefore, to achieve better combustion with less emission and also to accelerate the fuel-air mixing to improve the combustion, appropriate design of combustion chamber is crucial. Hence, in this work a study has been carried out using CFD to evaluate the effect of combustion chamber configuration on Diesel combustion with two different piston bowls. The two different piston configurations considered in this study are centre bowl on flat piston and pentroof offset bowl piston.
Technical Paper

Effect of Fuel Spray Inclinations on Spray Characteristics in a Port Fuel Injected Engine - A CFD Study

2013-11-27
2013-01-2783
In order to achieve good fuel spray characteristics, proper placing of the fuel injector in the intake manifold in port fuel injected (PFI) gasoline engines is very crucial. In automotive PFI engines, vehicle layout may be a constraint to mount the fuel injector in best possible location and inclination. In general, PFI engines use straight spray fuel injection. However, if there is a vehicle layout constraint, then inclined fuel spray may be suitable which is not very common. Hence, it is important to understand the effect of fuel spray inclination on fuel spray characteristics. In this study, a CFD analysis has been carried out for the four inclinations of fuel spray and the results are compared. The geometrical modeling of the fuel injector is done using ProE software. It is meshed with polyhedral cells and mesh refinement is done wherever required. Inlet air velocity and exit pressure of intake pipe at wide-open-throttle conditions are used as boundary conditions.
Technical Paper

Comparison of Conventional Intake Port and Swirl Intake Port on Mixture Formation in a GDI Engine - A CFD Analysis

2019-01-15
2019-01-0010
Gasoline direct injection (GDI) engines have picked up prominence in the current circumstances in light of lower fuel consumption and exhaust emissions. Mixture formation in these engines plays a critical role which affects the combustion, performance and emission characteristics. To get better mixture formation, various factors ought to be considered, of which intake port design is one of the factors of considerable importance. Therefore, in this study, a comparison of mixture formation, performance and emission characteristics has been analyzed in a GDI engine with conventional intake port and swirl intake port. The analysis is carried out on a four-stroke wall-guided GDI engine using the computational fluid dynamics (CFD) with the help of the CONVERGE. The validation of spray breakup model is carried out to the extent possible using the experimental results available in the literature.
Technical Paper

Study on Effect of Engine Operating Parameters on Flame Characteristics

2015-04-14
2015-01-0749
In gasoline direct injection (GDI) engines, air-fuel mixture homogeneity plays a major role on engine performance, especially in combustion and emission characteristics. The performance of the engine largely depends on various engine operating parameters viz., start of injection, duration of injection and spark timing. In order to achieve faster results CFD is becoming a handy tool to optimize and understand the effect of these parameters. Therefore, this study aims on evaluating the two injection parameters viz., single and split injection to evaluate different flame characteristics. Novelty in this study is to define five different parameters which are called α, β, γ, δ and η the details of which are explained in the paper. In order to understand the flame characteristics, these five parameters are found to be very useful. In the present study, a single-cylinder, two-valve, four- stroke engine which is used in two-wheelers in India is considered for carrying out the CFD analysis.
Technical Paper

Transient Spray Characteristics of Air Assisted Fuel Injection

2015-04-14
2015-01-0920
Gasoline direct injection (GDI) technology is already in use in four wheeler applications owing to the additional benefits in terms of better combustion and fuel economy. The air-assisted in-cylinder injection is the emerging technology for gasoline engines which works with low pressure injection systems unlike gasoline direct injection (GDI) system. GDI systems use high pressure fuel injection, which provides better combustion and reduced fuel consumption. It envisages small droplet size and low penetration rate which will reduce wall wetting and hydrocarbon emissions. This study is concerned with a CFD analysis of an air-assisted injection system to evaluate mixture spray characteristics. For the analysis, the air injector fitted onto a constant volume chamber (CVC) maintained at uniform pressure is considered. The analysis is carried out for various CVC pressures, mixture injection durations and fuel quantities so as to understand the effect on mixture spray characteristics.
Technical Paper

Parametric Study on a Gasoline Direct Injection Engine - A CFD Analysis

2017-01-10
2017-26-0039
Gasoline direct injection (GDI) engines are now trending in automobile field because of good fuel economy and low exhaust emissions over their port fuel injection (PFI) counter parts. They operate with a lean stratified mixture in most of conditions. However, their performance is dependent on mixture stratification which in-turn depends on fuel injection pressure, timing and strategy. But, the main challenge to GDI engines is soot and particulate matter (PM) emissions. However, they can be reduced by employing multi-stage fuel injection strategy. Therefore, in the present work, an effort has been made to study the effect of fuel injection parameters on soot emissions of a GDI engine using the CFD analysis. In addition, the study is also extended to evaluate the performance, combustion and other emission characteristics of the engine. First the engine is modelled using the PRO-E software. The geometrical details of the engine are obtained from the literature.
Technical Paper

Effect of Baffle Height on the in-Cylinder Air-Fuel Mixture Preparation in a Gasoline Direct Injection Engine – A Computational Fluid Dynamics Analysis

2024-04-09
2024-01-2697
In-cylinder fluid dynamics enhance performance and emission characteristics in internal combustion (IC) engines. Techniques such as helical ports, valve shrouding, masking, and modifications to piston profiles or vanes in ports are employed to achieve the desired in-cylinder flows in these engines. However, due to space constraints, modifications to the cylinder head are typically minimal. The literature suggests that introducing baffles into the combustion chamber of an IC engine can enhance in-cylinder flows, air-fuel mixing, and, subsequently, stratification. Studies have indicated that the height of the baffles plays a significant role in determining the level of improvement in in-cylinder flow and air-fuel mixing. Therefore, this study employs Computational fluid dynamics (CFD) analysis to investigate the impact of baffle height on in-cylinder flow and air-fuel mixing in a four-stroke, four-valve, spray-guided gasoline direct injection (GDI) engine.
X