Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Sled Tests

1998-02-23
980359
A series of eight sled tests was conducted using Hybrid III dummies and cadavers in order to examine the influence of foot placement on the brake pedal in frontal collisions. The brake pedal in the sled runs was fixed in a fully depressed position and the occupants' muscles were not tensed. The cadaver limbs and the Hybrid III lower extremities with 45° ankle and soft joint-stop were extensively instrumented to determine response during the crash event. Brake pedal reaction forces were measured using a six-axis load cell and high speed film was used for kinematic analysis of the crashes. Four right foot positions were identified from previous simulation studies as those orientations most likely to induce injury. In each test, the left foot was positioned on a simulated footrest, acting as a control variable that produced repeatable results in all dummy tests. Each of the different right foot orientations resulted in different loads and motions of the right leg and foot.
Technical Paper

Open-Loop Chestbands for Dynamic Deformation Measurements

1998-02-23
980857
Originally designed for measuring closed-loop contours such as those around a human thorax, the External Peripheral Instrument for Deformation Measurement (EPIDM), or chestband, was developed to improve the measurement of dummy and cadaver thoracic response during impact. In the closed-loop configuration, the chestband wraps around on itself forming a closed contour. This study investigates the use of the chestband for dynamic deformation measurements in an open-loop configuration. In the open-loop configuration, the chestband does not generally form a closed contour. This work includes enhanced procedures and algorithms for the calculation of chestband deformation contours including the determination of static and dynamic chestband contours under several boundary conditions.
Technical Paper

The Influence of Padding and Shoes on the Dynamic Response of Dummy Lower Extremities

1996-02-01
961042
This work studies the effect of padding on the force levels in impulsively loaded dummy lower extremities. Tests include the effect of padding incorporated into the soles of shoes and an examination of the potential of shoe padding for mitigating impact loading on the lower extremities. Three different shoes and three paddings were studied using a pendulum impactor; two different padding levels were studied in an impact sled test with simulated translational structural intrusion. The tests indicate a greater than 20% variation in peak axial force imparted to the lower tibia between shoes, and a greater than 50% variation in peak axial force across the paddings tested. From sled tests with simulated structural intruaion, we see a decrease of approximately 15% in peak axial load and a decrease of over 20% in peak anterior/posterior moment.
Technical Paper

Small Female Head and Neck Interaction With a Deploying Side Air Bag

1999-09-23
1999-13-0013
This paper presents dummy and cadaver experiments designed to investigate the injury potential of an out-of-position small female head and neck from a deploying side air bag. Three seat mounted, thoracic type, side air bags were used that varied in inflator aggressivity. The ATB/CVS multi body program was used to identify the worst case loading position for the small female head and neck. Once the initial position was identified, a total of three Hybrid III 5th percentile dummy and three small female cadaver tests (51 ± 9 years, 64 ± 8 kg, 159 ± 10 cm) were performed. Instrumentation for the dummy included upper and lower neck load cells, while both the dummy and the cadavers had accelerometers and angular rate sensors fixed to the head and T1 vertebrae in order to provide head and neck kinematic data. Head center of gravity accelerations for the dummy ranged from 71 g's to 154 g's, and were greater than cadaver values, which ranged from 68 g's to 103 g's.
Technical Paper

Deployment of Air Bags into the Thorax of an Out-of-Position Dummy

1999-03-01
1999-01-0764
The air bag has proven effective in reducing fatalities in frontal crashes with estimated decreases ranging from 11% to 30% depending on the size of the vehicle [IIHS-1995, Kahane-1996]. At the same time, some air bag designs have caused fatalities when front-seat passengers have been in close proximity to the deploying air bag [Kleinberger-1997]. The objective of this study was to develop an accurate and repeatable out-of-position test fixture to study the deployment of air bags into out-of-position occupants. Tests were performed with a 5th percentile female Hybrid III dummy and studied air bag loading on the thorax using draft ISO-2 out-of-position (OOP) occupant positioning. Two different interpretations of the ISO-2 positioning were used in this study. The first, termed Nominal ISO-2, placed the chin on the steering wheel with the spine parallel to the steering wheel.
X