Refine Your Search

Topic

Author

Search Results

Journal Article

Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution

2013-09-08
2013-24-0041
Schlieren/shadowgraphy has been adopted in the combustion research as a standard technique for tip penetration analysis of sprays under diesel-like engine conditions. When dealing with schlieren images of reacting sprays, the combustion process and the subsequent light emission from the soot within the flame have revealed both limitations as well as considerations that deserve further investigation. Seeking for answers to such concerns, the current work reports an experimental study with this imaging technique where, besides spatial filtering at the Fourier plane, both short exposure time and chromatic filtering were performed to improve the resulting schlieren image, as well as the reliability of the subsequent tip penetration measurement. The proposed methodology has reduced uncertainties caused by artificial pixel saturation (blooming).
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

2017-03-28
2017-01-0859
The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface area density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity.
Technical Paper

Influence on Diesel Injection Characteristics and Behavior Using Biodiesel Fuels

2009-04-20
2009-01-0851
The aim of this paper is to present an experimental study of the influence of using biodiesel blended fuels on a standard injection system taken from a DI commercial Diesel engine. The effects have been evaluated through injection rate measurements, spray momentum and spray visualization at ambient temperature (non-evaporating condition). These tests have been done using five different injection pressures, from 300 to 1600 bar, and three back pressures: 20, 50 and 80 bar. It is well known that fuel properties like density or kinematic viscosity are higher in vegetable oils and strongly affect how injection system operates. The tests showed that the use of biodiesel fuels leads to a higher mass flow when the injector is fully open. The spray pattern is also affected, biodiesel penetrates more and the spray is narrower. Some explanations are provided in this paper in order to understand better the injection process when vegetable oils are used.
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

2016-09-27
2016-01-8082
The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Numerical Simulation of a Direct-Acting Piezoelectric Prototype Injector Nozzle Flow for Partial Needle Lifts

2017-09-04
2017-24-0101
Actual combustion strategies in internal combustion engines rely on fast and accurate injection systems to be successful. One of the injector designs that has shown good performance over the past years is the direct-acting piezoelectric. This system allows precise control of the injector needle position and hence the injected mass flow rate. Therefore, understanding how nozzle flow characteristics change as function of needle dynamics helps to choose the best lift law in terms of delivered fuel for a determined combustion strategy. Computational fluid dynamics is a useful tool for this task. In this work, nozzle flow of a prototype direct-acting piezoelectric has been simulated by using CONVERGE. Unsteady Reynolds-Averaged Navier-Stokes approach is used to take into account the turbulence. Results are compared with experiments in terms of mass flow rate. The nozzle geometry and needle lift profiles were obtained by means of X-rays in previous works.
Technical Paper

Soot Model Calibration Based on Laser Extinction Measurements

2016-04-05
2016-01-0590
In this work a detailed soot model based on stationary flamelets is used to simulate soot emissions of a reactive Diesel spray. In order to represent soot formation and oxidation processes properly, a calibration of the soot reaction rates has to be performed. This model calibration is usually performed on basis of engine out soot measurements. Contrary to this, in this work the soot model is calibrated on local soot concentrations along the spray axis obtained from laser extinction chamber measurements. The measurements are performed with B7 certification Diesel and a series production multihole injector to obtain engine similar boundary conditions. In order to ensure that the flow and mixture field is captured well by the CFD-simulation, the simulated liquid penetration lengths and flame lift-off lengths are compared to chamber measurements.
Technical Paper

Comparative Analysis of Particle Emission with Two Different Injectors in a CAI 2-Stroke Gasoline Engine

2016-04-05
2016-01-0747
Nowadays the main part of investigations in controlled auto-ignition (CAI) engines are centered on performance or some engine processes simulation, leaving aside particle number (PN) emission. The present work is focused on this last topic: PN emission analysis using two different injectors in a 2-stroke CAI engine, and a global comparison of PN emission of this engine with its homonymous 4-stroke engines at two operating conditions. The study was performed in a single-cylinder gasoline engine with 0.3 l displacement, equipped with an air-assisted direct-injection (DI) fuel injection system. Concerning the injectors evaluated, significant differences in PN emission have been found. When the I160X injector (narrow spray angle) was used, PN emissions were reduced. The spray cone angle during the injection event appears to be a key factor for PN emission reduction.
Technical Paper

Modeling of the Injection and Decomposition Processes of Urea-Water-Solution Spray in Automotive SCR Systems

2011-04-12
2011-01-1317
The current work aims to develop a reliable numerical model simulating the depletion and decomposition process of urea-water solution (UWS) droplets injected in a hot exhaust stream as experienced in an automotive urea-based selective catalytic reduction (SCR) system. The depleting process of individual UWS droplets in heated environment is simulated using a multicomponent vaporization model with separate depletion law for each component. While water depletion is modeled as a vaporization process, urea depletion from the UWS droplet is modeled using two different approaches. The first approach models urea depletion as a vaporization process with an experimentally determined saturation pressure. The second approach models urea depletion as a direct thermolysis process from molten urea to ammonia and isocyanic acid using various sets of kinetic parameters. Comparison with experimental data shows the superiority of modeling urea depletion as a vaporization process.
Technical Paper

Nozzle Geometry Size Influence on Reactive Spray Development: From Spray B to Heavy Duty Applications

2017-03-28
2017-01-0846
In the present work a constant-pressure flow facility able to reach 15 MPa ambient pressure and 1000 K ambient temperature has been employed to carry out experimental studies of the combustion process at Diesel engine like conditions. The objective is to study the effect of orifice diameter on combustion parameters as lift-off length, ignition delay and flame penetration, assessing if the processing methodologies used for a reference nozzle are suitable in heavy duty applications. Accordingly, three orifice diameter were studied: a spray B nozzle, with a nominal diameter of 90 μm, and two heavy duty application nozzles (diameter of 194 μm and 228 μm respectively). Results showed that nozzle size has a substantial impact on the ignition event, affecting the premixed phase of the combustion and the ignition location. On the lift-off length, increasing the nozzle size affected the combustion morphology, thus the processing methodology had to be modified from the ECN standard methodology.
Technical Paper

Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems

2017-03-28
2017-01-0834
An extensive numerical study of two-phase flow inside the nozzle holes and the issuing jets for a multi-hole direct injection gasoline injector is presented. The injector geometry is representative of the Spray G nozzle, an eight-hole counter-bored injector, from the Engine Combustion Network (ECN). Homogeneous Relaxation Model (HRM) coupled with the mixture multiphase approach in the Eulerian framework has been utilized to capture the phase change phenomena inside the nozzle holes. Our previous studies have demonstrated that this approach is capable of capturing the effect of injection transients and thermodynamic conditions in the combustion chamber, by predicting phenomenon such as flash boiling. However, these simulations were expensive, especially if there is significant interest in predicting the spray behavior as well.
Technical Paper

Modeling the Dynamic Coupling of Internal Nozzle Flow and Spray Formation for Gasoline Direct Injection Applications

2018-04-03
2018-01-0314
A numerical study has been carried out to assess the effects of needle movement and internal nozzle flow on spray formation for a multi-hole Gasoline Direct Injection system. The coupling of nozzle flow and spray formation is dynamic in nature and simulations with pragmatic choice of spatial and temporal resolutions are needed to analyze the sprays in a GDI system. The dynamic coupling of nozzle flow and spray formation will be performed using an Eulerian-Lagrangian Spray Atomization (ELSA) approach. In this approach, the liquid fuel will remain in the Eulerian framework while exiting the nozzle, while, depending on local instantaneous liquid concentration in a given cell and amount of liquid in the neighboring cells, part of the liquid mass will be transferred to the Lagrangian framework in the form of Lagrangian parcels.
Technical Paper

Hydraulic Behavior and Spray Characteristics of a Common Rail Diesel Injection System Using Gasoline Fuel

2012-04-16
2012-01-0458
Regulations on emissions from diesel engines are becoming more stringent worldwide. Hence there is a great deal of interest in developing engine combustion systems that offer the fuel efficiency of a diesel engine, but with low smoke and NOx emissions. Thus, premixed compression ignition combustion is an interesting way to achieve a clean and efficient engine. However, using a high reactivity fuel such as diesel fuel leads to a complex and expensive engine design. A proven way to overcome this drawback is to actively control the reactivity of the fuel using low cetane fuels such as gasoline. This strategy has been explored with single and multiple cylinder engines. However no detailed and well conducted studies of the injection process were found related to the effects of gasoline use in a standard commercial compression ignition diesel engine injection system.
Technical Paper

Schlieren Measurements of the ECN-Spray A Penetration under Inert and Reacting Conditions

2012-04-16
2012-01-0456
In the wake of the Turbulent Nonpremixed Flames group (TNF) for atmospheric pressure flames, an open group of laboratories belonging to the Engine Combustion Network (ECN) agreed on a list of boundary conditions -called “Spray A”- to study the free diesel spray under steady-state conditions. Such conditions are relevant of a diesel engine operating at low temperature combustion conditions with moderate EGR, small nozzle and high injection pressure. The objective of this program is to accelerate the understanding of diesel flames, by applying each laboratory's knowledge and skills to a specific set of boundary conditions, in order to give an extensive and reliable experimental database to help spray modeling. In the present work, “Spray A” operating condition has been achieved in a constant pressure, continuous flow vessel. Schlieren high-speed imaging has been conducted to measure the spray penetration under evaporative conditions.
Technical Paper

Numerical Modeling of the Impingement Process of Urea-Water Solution Spray on the Heated Walls of SCR Systems

2012-04-16
2012-01-1301
Improving the NOx removal efficiency of an automotive urea-based SCR system requires optimized injection system to minimize wall deposition while providing uniform distribution of exhaust gases and reductant mixture at the entrance of the catalyst. The focus of the current study is to develop and validate a three-dimensional computational model capable of simulating the urea-water-solution (UWS) spray/wall interaction. The interaction between the injected UWS spray droplets and the surrounding gas is modeled using the Eulerian-Lagrangian approach,. A specially developed multicomponent vaporization model is implemented to simulate the depletion mechanism of individual UWS droplets. The spray/wall interaction mechanism involves spray/wall impingement and wall film formation. While the spray/wall impingement mechanism is modeled using a standard criteria, the O'Rourke and Amsden model for wall film formation is modified to account for the multicomponent nature of the UWS spray.
Technical Paper

An Experimental Approach in the Impact of Electric Fields on Liquid Fuel Spray Injection

2013-04-08
2013-01-1607
This publication is the result of a multidisciplinary collaboration between the academia and the industry. An attempt to pre-ionize and influence the trajectory and the fluid mechanics of the injected fuel into an experimental injection system by means of electromagnetic fields was made. This collaboration project started from research proposal, which aims at exploring the effects of a highly ionized environment on the fuel injection event and how the momentum of the injected fuel droplets may be affected by the electromagnetic fields in form of quantified variables, such as spray penetration, spreading angle and the spray axis angle. An influence of the applied electromagnetic field on the fuel spray depending on the electrode configuration was observed and is presented and discussed in this publication.
Technical Paper

Evaluation of Emissions and Performances from Partially Premixed Compression Ignition Combustion using Gasoline and Spark Assistance

2013-04-08
2013-01-1664
Several new combustion concepts have been developed during last decade with the aim of reducing pollutant emissions. Specifically, these strategies allow a simultaneous reduction of NOx and soot emissions by reducing the local combustion temperatures, enhancing the fuel/air mixing (PCCI, HCCI…). In spite of their benefits, these concepts present difficulties controlling the appropriate combustion phasing as well as high knocking levels and therefore, their operating range is reduced to low-medium loads. In this work gasoline is considered as a fuel in order to improve combustion strategies based on fully or partially premixed combustion in CI engines. Its use provides more flexibility to achieve lean and low combustion temperature, however the concept has demonstrated difficulty under light load conditions using gasoline with ON up to 95.
Technical Paper

Transient Rate of Injection Effects on Spray Development

2013-09-08
2013-24-0001
Transients in the rate of injection (ROI) with respect to time are ever-present in direct-injection engines, even with common-rail fueling. The shape of the injection ramp-up and ramp-down affects spray penetration and mixing, particularly with multiple-injection schedules currently in practice. Ultimately, the accuracy of CFD model predictions used to optimize the combustion process depends upon the accuracy of the ROI utilized as fuel input boundary conditions. But experimental difficulties in the measurement of ROI, as well as real-world affects that change the ROI from the bench to the engine, add uncertainty that may be mistaken for weaknesses in spray modeling instead of errors in boundary conditions. In this work we use detailed, time-resolved measurements of penetration at the Spray A conditions of the Engine Combustion Network to rigorously guide the necessary ROI shape required to match penetration in jet models that allow variable rate of injection.
X