Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Study on Sound Insulation Performance of Vehicle Dash Reinforcements

Dash panel is the most important path of structure-borne and air-borne interior noise for engine-driven vehicles. Reinforcements, which are added to dash panel, are mainly designed in order to suppress the structure-borne noise contribution from the dash panel. However, the effects of dash reinforcements do not seem clear in the viewpoint of air-borne noise. In this paper, the insulation performance of a dash structure with spot-welded reinforcements is studied through several STL (Sound Transmission Loss) tests and STL simulations. The results of this study could be utilized for increasing the sound insulation performance of vehicle body structure.
Technical Paper

Prediction and Improvement of High Frequency Road Noise of a Mid-Size Sedan

An airborne SEA model to predict high frequency interior noise is built for a mid-size sedan. The 60 KPH running condition is simulated based on this model and then the corresponding result is compared to the measured interior noise. A very similar prediction is found. Also, weak points of sound insulation and effective absorption area in this vehicle are identified using the model. It is shown that in an early design stage and when the proto vehicle is not available yet, the airborne SEA model is very useful to find out weak points of vehicle sound packages.
Technical Paper

Extensive Correlation Study of Acoustic Trim Packages in Trimmed Body Modeling of an Automotive Vehicle

In the automotive sector, the structure borne noise generated by the engine and road-tire interactions is a major source of noise inside the passenger cavity. In order to increase the global acoustic comfort, predictive simulation models must be available in the design phase. The acoustic trims have a major impact on the noise level inside the car cavity. Although several publications for this kind of simulations can be found, an extensive correlation study with measurement is needed, in order to validate the modeling approaches. In this article, a detailed correlation study for a complete car is performed. The acoustic trim package of the measured car includes all acoustic trims, such as carpet, headliner, seats and firewall covers. The simulation methodology relies on the influence of the acoustic trim package on the car structure and acoustic cavities. The challenge lies in the definition of an efficient and accurate framework for acoustic trimmed bodies.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid-frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.