Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Distribution of Vapor Concentration in a Diesel Spray Impinging on a Flat Wall by Means of Exciplex Fluorescence Method -In Case of High Injection Pressure-

1997-10-01
972916
Diesel sprays injected into a combustion chamber of a small sized high-speed CI engine impinge surely on a piston surface and a cylinder wall. As a consequence, their vaporization, mixture formation and combustion processes are affected by impingement phenomena. And the other important factors affecting on the processes is the injection pressure. Then, the distribution of the vapor concentration in a single diesel spray impinging on a flat and hot wall was experimented by the exciplex fluorescence method, as a simple case. The injection pressure was varied in the range from 55 MPa to 120 MPa. It is found that the distribution of the vapor concentration in this case is much leaner than that in the case of the low injection pressure of 17.8MPa.
Technical Paper

Large Eddy Simulation of Diesel Spray Combustion with Eddy-Dissipation Model and CIP Method by Use of KIVALES

2007-04-16
2007-01-0247
Three-dimensional large eddy simulation (LES) has been conducted for a diesel spray flame using KIVALES which is LES version of KIVA code. Modified TAB model, velocity interpolation model and rigid sphere model are used to improve the prediction of the fuel-mixture process in the diesel spray. Combustion is simulated using the Eddy-Dissipation model. CIP method was incorporated into the KIVALES in order to suppress the numerical instability on the combustible flow. The formation of soot and NO was simulated using Hiroyasu model and KIVA original model. Three different grid resolutions were used to examine the grid dependency. The result shows that the LES approach with 0.5 mm grid size is able to resolve the instantaneous spray with the intermittency in the spray periphery, the axi-symmetric shape and meandering flow after the end of injection as shown in the experimental results.
Technical Paper

Mixing and soot formation processes in transient gas jet flame

2000-06-12
2000-05-0075
A transient gas jet and its flame are the most fundamental phenomena of a transient spray and its flame breaking out in a CI engine and an SI engine with the direct injection system. In the case of CNG and LNG engines, the fuel itself is just gaseous state. The 2-LIF technique was applied to the transient gas jet to obtain the mixing process between the surroundings and it, and the simultaneous application of LII and LIS techniques were applied to the transient gas jet flame to obtain the soot formation process.
Technical Paper

Fundamental Research on Unsteady Pre-mixed Combustion in Non-Uniform Distribution of Fuel Concentration

2001-09-24
2001-01-3487
It is significant for understanding the phenomena in a stratified charge engine and an SI engine with direct injection system to carry out the fundamental research. The experiments were conducted in a constant volume chamber with atmospheric condition. The pre-mixed charge composed of ethylene and air was charged with various equivalence ratio, the second charge with the same composition was injected into the chamber, thereafter, the combustion started by a spark plug. The phenomena were analyzed by use of the experimental results of shadowgraph, [OH] natural emission, pressure history and NOx and UHC in the exhaust gas.
Technical Paper

Mechanism of Combined Combustion of Premixed Gas and Droplets

2002-10-21
2002-01-2843
In an SI engine with direct injection of gasoline (DGI), many small droplets disperse in premixed gas in the cylinder. In a CI engine, diesel spray is injected a cylinder, thus, the situation at the spray periphery is almost the same as that of DGI SI engine. From the standpoint it is useful for understanding the combustion phenomena in both engines to experiment the combined combustion of premixed gas where many small droplets exist. This paper describes this kind of combustion and it seems to be able to apply the results to the simulation of combustion in these engines.
Technical Paper

Large Eddy Simulation of Non-Evaporative and Evaporative Diesel Spray in Constant Volume Vessel by Use of KIVALES

2006-10-16
2006-01-3334
Large Eddy Simulation (LES) is applied to non-evaporative and evaporative diesel spray simulations. KIVALES, which is LES version of KIVA code, is used as the LES computational code. Modified TAB model is used as breakup model, and interpolated donor cell differencing scheme is employed to calculate convective terms. To validity LES simulation, LES results using KIVALES are compared with experimental results and simulated results with conventional RANS approach using KIVA3V res.2. The results show that the LES simulation of non-evaporative spray depends on the grid size in comparison with RANS simulation, and good agreement is obtained between experimental results and the LES results with fine grid (720,000 cells). Furthermore, asymmetric non-evaporative spray which has intermittency at the outer edge of sprays is simulated, since instantaneous turbulent flow field can be predicted directly in LES case.
Technical Paper

Effect of Different Fuel Supply System on Combustion Characteristics in Hydrogen SI Engine

2022-01-09
2022-32-0092
In recent years, internal combustion engine using hydrogen gas, has attracted attention as one solution to the problem of global warming. Hydrogen gas has excellent combustion characteristics such as wide limits of inflammability and fast burning velocity because of high diffusion rate. Therefore, it has been made to obtain stable ignition and combustion by adding hydrogen with lean mixture in spark ignition engines using hydrocarbon fuels and to be attempted efficient operation by engine researchers. The purpose of this study is to reduce cooling loss in a gas engine using hydrogen gas and hydrogen Mixer system (Mixer) engine was remodeled to hydrogen Port Injection (PI) system engine. In this report, the heterogeneity of hydrogen mixture is clarified by comparing the combustion characteristics of the Mixer and the PI, and the effect of the difference in hydrogen supply systems on cooling loss is system. Ignition delay of the PI system is shorter than that of the Mixer.
Technical Paper

Analysis of Knocking Mechanism Applying the Chemical Luminescence Method

1995-02-01
951005
One of the most effective means of improving the thermal efficiency and the specific fuel consumption in spark ignition engines is the increase of the compression ratio. However, there is a limit to it because of the generation of knocking combustion due to the rise of temperature and pressure in the unburnt mixture. Also in turbo charged spark ignition engines, the ignition timing cannot be advanced until MBT in order to avoid the knocking phenomena. Generally speaking, it is very difficult to investigate the phenomena in an actual engine, because there are many restriction and the phenomena are too complex and too fast. According-ly, it is advantageous to reveal the phenomena fundamentally, including the autoignition process of the end-gas by using simplified model equipment. Therefore, a rapid compression and expansion machine (RCEM) with a pan-cake combustion chamber was designed and developed for the experiments presented here.
Technical Paper

Detection of Luminescence from Pre-Autoignition Reaction Zone in S.I. Engine

1997-02-24
970508
Knocking phenomenon in a spark ignition engine breaks out due to autoignition in the unburned gas region. Investigation on the pre-autoignition reaction, that is, the reaction of cool and blue flames happening before autoignition must be carried out in detail to control knocking. The reactions appear in an extremely short time before autoignition, so, much difficulties accompany an attempt to grasp the situation. In the experiments presented hear, progress situation of pre-autoignition reaction was made clear by visualized phenomena in a rapid compression and expansion machine (R.C.E.M), which had good reproducibility. Taken by two ultra high-speed video cameras. We determined the ignition delay time was caught by analyzing the emission of light from the combustion chamber before knocking occurrence.
Technical Paper

Organized Structure and Motion in Diesel Spray

1997-02-24
970641
This paper deals with the particle distribution in Diesel spray under the non-evaporating condition from the analytical aspect based on our experimental results. In the analysis, TAB method of KIVA II code and the k-ε turbulent model were used, and the mono-disperse distribution of the initial parcel's diameter, whose size equals to the nozzle hole diameter, was utilized in conjunction with the breakup model. The size distribution of atomized droplets (i.e. the χ-squared distribution function) is justified with the degree of freedom. It is shown that the ambient gas, which is initially quiescent, is induced and led to a turbulent gas jet. The turbulent gas jet which has a equivalent momentum with the Diesel spray was also examined by Discrete Vortex method. The quantitative jet growth was shown to be possible for the estimation and determination in its initial boundary values at the nozzle.
Technical Paper

Transient Characteristics of Fuel Atomization and Droplet Size Distribution in Diesel Fuel Spray

1983-02-01
830449
The purposes of this study are to clarify the atomization mechanism, the change over time in droplet size distribution, and the change in spray characteristics dependent on back pressure on diesel fuel spray. Diesel spray injected into a quiescent gaseous environment under high pressure is observed by taking direct microscopic photographs varying the moment of exposure, the back pressure, and the ambient density. The results show that the mechanism of spray atomization is divided into 4 processes, and spatial distribution of breakup droplets and a droplet volume rate are assessed for the whole spray region. Total and local distributions of droplet size are expressed by empirical equations as a function of time elapsed from the moment of injection. It is confirmed that the uniformity of the distribution, Sauter mean diameter of droplets, and droplet production rate change with time. Mean droplet diameter is further described in relation to the pressure drop and the ambient density.
Technical Paper

Measurement and Modeling on Wall Wetted Fuel Film Profile and Mixture Preparation in Intake Port of SI Engine

1999-03-01
1999-01-0798
In SI engines with port injection system, the injected fuel spray adheres surely on the port wall and the inlet valve, consequently, the spray-wall interaction process leads to the generation of unburned hydrocarbons and uncontrollable mixture formation. This paper deals with the fuel mixture preparation process including basic research on characteristics of the wall-wetted fuel film on a flat wall inside a constant volume vessel. In the experiments, iso-octane mixed with biacetyl as a tracer dopant was injected through a pintle type injector against a flat glass wall under the ambient conditions of atmospheric pressure and room temperature. The thickness of the adhered fuel film on the wall was quantitatively measured by using laser induced fluorescence (LIF) technique, which provides 2-D distribution information with high special resolution as a function of the injection duration, the impingement distance from the injector to the wall, and the impingement angle against the wall.
Technical Paper

Atomization Model in Port Fuel Injection Spray for Numerical Simulation

2023-09-29
2023-32-0091
Computational Fluid Dynamics (CFD) simulation is widely used in the development and validation of automotive engine performance. In engine simulation, spray breakup submodels are important because spray atomization has a significant influence on mixture formation and the combustion process. However, no breakup models have been developed for the fuel spray with plate-type multi-hole nozzle installed in port fuel injection spark ignition (SI) engines. Therefore, the purpose of this study is to simulate spray formation in port fuel injection precisely. The authors proposed the heterogeneous sheet breakup model for gasoline spray injected from plate type multi-hole nozzle. The novel breakup model was developed by clarifying the phenomenological mechanism of the spray atomization process. In this paper, this model was improved in dispersion characteristics and evaluated by the comparison of the model calculation results with experimental data.
Technical Paper

Mixture Formation Process Analysis in Spray and Wall Impingement Spray under Evaporating Conditions for Direct injection S.I. engines

2023-09-29
2023-32-0015
In this study, the authors analyze the concentration distribution of an evaporative spray mixture with LIEF (Laser induced exciplex fluorescence) method, which is a type of optical measurement. LIEF method is one of the optical measurements for obtaining the spray concentration distribution for separating vapor/liquid phases based on the fluorescence characteristics. In this paper, a quantitative concentration distribution analysis method for wall impingement spray in heterogeneous temperature field has been proposed. Then, a series of experiments were performed in varying injection pressure and ambient density. As a result, a two-dimensional concentration distribution was obtained for the free spray and wall impingement spray.
Technical Paper

Effect of Different Hydrogen-CNG Supply Method on the Combustion and Emission Characteristics in a SI Engine

2023-09-29
2023-32-0048
The purpose of this study is to reduce cooling loss in gas engines using hydrogen. In this report, the effect of different hydrogen-CNG supply methods on combustion and exhaust characteristics of SI engine were investigated. As a result, the 13A-port-injection caused sharp heat release at hydrogen addition ratio (RH) of 20 %, with a maximum brake thermal efficiency of 27.5 %. Also, the hydrogen-port-injection promotes combustion above RH=40 % and reduces cooling loss, resulting in a maximum brake thermal efficiency of 31.0 % at RH=80 %, 1.8 pt higher than that of the 13A-port-injection.
X