Refine Your Search

Search Results

Viewing 1 to 20 of 20
Journal Article

Numerical Study of the Influence of EGR on In-Cylinder Soot Characteristics in a Heavy-Duty Diesel Engine using CMC

2014-04-01
2014-01-1134
This paper presents numerical simulations of in-cylinder soot evolution in the optically accessible heavy-duty diesel engine of Sandia Laboratories performed with the conditional moment closure (CMC) model employing a reduced n-heptane chemical mechanism coupled with a two-equation soot model. The influence of exhaust gas recirculation (EGR) on in-cylinder processes is studied considering different ambient oxygen volume fractions (8 - 21 percent), while maintaining intake pressure and temperature as well as the injection configuration unchanged. This corresponds to EGR rates between 0 and 65 percent. Simulation results are first compared with experimental data by means of apparent heat release rate (AHRR) and temporally resolved in-cylinder soot mass, where a quantitative comparison is presented. The model was found to fairly well reproduce ignition delays as well as AHRR traces along the EGR variation with a slight underestimation of the diffusion burn portion.
Journal Article

LES Multi-Cycle Analysis of the Combustion Process in a Small SI Engine

2014-04-01
2014-01-1138
Large eddy simulations (LES) of a port-injected 4-valve spark ignited (SI) engine have been carried out with the emphasis on the combustion process. The considered operating point is close to full load at 3,500 RPM and exhibits considerable cyclic variation in terms of the in-cylinder pressure traces, which can be related to fluctuations in the combustion process. In order to characterize these fluctuations, a statistically relevant number of subsequent cycles, namely up to 40, have been computed in the multi-cycle analysis. In contrast to other LES studies of SI engines, here the G-equation (a level set approach) has been adopted to model the premixed combustion in the framework of the STAR-CD/es-ICE flow field solver. Tuning parameters are identified and their impact on the result is addressed.
Journal Article

Determination of Supersonic Inlet Boundaries for Gaseous Engines Based on Detailed RANS and LES Simulations

2013-09-08
2013-24-0004
The combustion of gaseous fuels like methane in internal combustion engines is an interesting alternative to the conventional gasoline and diesel fuels. Reasons are the availability of the resource and the significant advantage in terms of CO2 emissions due to the beneficial C/H ratio. One difficulty of gaseous fuels is the preparation of the gas/air mixtures for all operation points, since the volumetric energy density of the fuel is lower compared to conventional liquid fuels. Low-pressure port-injected systems suffer from substantially reduced volumetric efficiencies. Direct injection systems avoid such losses; in order to deliver enough fuel into the cylinder, high pressures are however needed for the gas injection which forces the fuel to enter the cylinder at supersonic speed followed by a Mach disk. The detailed modeling of these physical effects is very challenging, since the fluid velocities and pressure and velocity gradients at the Mach disc are very high.
Journal Article

Extending the NOx Reduction Potential with Miller Valve Timing Using Pilot Fuel Injection on a Heavy-Duty Diesel Engine

2014-10-13
2014-01-2632
New emission legislations applicable in the near future to sea-going vessels, off-road and off-highway vehicles require drastic nitric oxides emission reduction. A promising approach to achieve part of this decrease is charge air temperature reduction using Miller timing. However, it has been shown in literature that the reduction potential is limited, achieving a minimum in NOx emissions at a certain end-of-compression temperature. Further temperature reduction has shown to increase NOx emissions again. Some studies have shown that this increase is correlated to an increased amount of premixed combustion. In this work, the effects of pilot injection on engine out NOx emissions for very early intake valve closure (i.e. extreme Miller), high boost pressures and cold end-of-compression in-cylinder conditions are investigated. The experiments are carried out on a 3.96L single cylinder heavy-duty common-rail Diesel engine operating at 1000 rpm and at constant global air-to-fuel ratio.
Journal Article

Influence of EGR on Post-Injection Effectiveness in a Heavy-Duty Diesel Engine Fuelled with n-Heptane

2014-10-13
2014-01-2633
Numerical simulations of a heavy-duty diesel engine fuelled with n-heptane have been performed with the conditional moment closure (CMC) combustion model and an embedded two-equation soot model. The influence of exhaust gas recirculation on the interaction between post- and main- injection has been investigated. Four different levels of EGR corresponding to intake ambient oxygen volume fractions of 12.6, 15, 18 and 21% have been considered for a constant intake pressure and temperature and unchanged injection configuration. Simulation results have been compared to the experimental data by means of pressure and apparent heat-release rate (AHRR) traces and in-cylinder high-speed imaging of natural soot luminosity and planar laser-induced incandescence (PLII). The simulation was found to reproduce the effect of EGR on AHRR evolutions very well, for both single- and post-injection cases.
Journal Article

Modeling Split Injections of ECN “Spray A” Using a Conditional Moment Closure Combustion Model with RANS and LES

2016-10-17
2016-01-2237
This study investigates n-dodecane split injections of “Spray A” from the Engine Combustion Network (ECN) using two different turbulence treatments (RANS and LES) in conjunction with a Conditional Moment Closure combustion model (CMC). The two modeling approaches are first assessed in terms of vapor spray penetration evolutions of non-reacting split injections showing a clearly superior performance of the LES compared to RANS: while the former successfully reproduces the experimental results for both first and second injection events, the slipstream effect in the wake of the first injection jet is not accurately captured by RANS leading to an over-predicted spray tip penetration of the second pulse. In a second step, two reactive operating conditions with the same ambient density were investigated, namely one at a diesel-like condition (900K, 60bar) and one at a lower temperature (750K, 50bar).
Journal Article

Experimental and Numerical Investigation of the Engine Operational Conditions’ Influences on a Small Un-Scavenged Pre-Chamber’s Behavior

2017-09-04
2017-24-0094
Despite significant benefits in terms of the ignition enhancement, the strength and timing of the turbulent flame jets subsequently issuing into the main chamber strongly depend on the pre-chamber combustion process and, thus, are sensitive to the specific engine operating conditions it experienced. This poses considerable difficulties in optimizing engine operating conditions as well as controlling engine performance. This paper investigates the influence of engine operating conditions on the pre-chamber combustion event using both experimental and numerical methods. A miniaturized piezo-electric pressure transducer was designed to be placed inside the engine cylinder head to record the pre-chamber inner volume pressure, in addition to conventional pressure indication inside the main chamber.
Journal Article

The Effect of Cycle-to-Cycle Variations on the NOx-SFC Tradeoff in Diesel Engines under Long Ignition Delay Conditions

2017-09-04
2017-24-0100
Cycle-to-cycle variations in internal combustion engines are known to lead to limitations in engine load and efficiency, as well as increases in emissions. Recent research has led to the identification of the source of cyclic variations of pressure, soot and NO emissions in direct injection common rail diesel engines, when employing a single block injection and operating under long ignition delay conditions. The variations in peak pressure arise from changes in the diffusion combustion rate, caused by randomly occurring in-cylinder pressure fluctuations. These fluctuations result from the excitation of the first radial mode of vibration of the cylinder gases which arises from the rapid premixed combustion after the long ignition delay period. Cycles with high-intensity fluctuations present faster diffusion combustion, resulting in higher cycle peak pressure, as well as higher measured exhaust NO concentrations.
Journal Article

Optical Investigation of Sooting Propensity of n-Dodecane Pilot/Lean-Premixed Methane Dual-Fuel Combustion in a Rapid Compression-Expansion Machine

2018-04-03
2018-01-0258
The sooting propensity of dual-fuel combustion with n-dodecane pilot injection in a lean-premixed methane-air charge has been investigated using an optically accessible Rapid Compression-Expansion Machine (RCEM) to achieve engine-relevant pressure and temperature conditions at the start of pilot injection. A Diesel injector with a 100 μm single-hole coaxial nozzle, mounted at the cylinder periphery, has been employed to admit the pilot fuel. The aim of this study was to enhance the fundamental understanding of soot formation and oxidation processes of n-dodecane in the presence of methane in the air charge by parametric variation of methane equivalence ratio, charge temperature, and pilot fuel injection duration. The influence of methane on ignition delay and flame extent of the pilot fuel jet has been determined by simultaneous excited-state hydroxyl radical (OH*) chemiluminescence and Schlieren imaging.
Technical Paper

Influence of Water-Diesel Fuel Emulsions and EGR on Combustion and Exhaust Emissions of Heavy Duty DI-Diesel Engines equipped with Common-Rail Injection System

2003-10-27
2003-01-3146
In this paper we investigate the effect of the introduction of water in the combustion chamber of a DI-diesel engine on combustion characteristics and pollutant formation, by using water-diesel fuel emulsions with three distinct water amounts (13%, 21% and 30%). For the measurements we use a modern 4-cylinder DI-diesel engine with high-pressure common rail fuel injection and EGR system. The engine investigations are conducted at constant speed in different operating points of the engine map with wide variations of injection setting parameters and EGR rate. The main concern refers to the interpretation of both measured values and relevant thermodynamic variables, which are computed with analytical instruments (heat release rate, ignition delay, reciprocal characteristic mixing time, etc). The analysis of the measured and computed data shows clear trends and detailed evaluations on the behavior of water-diesel fuel emulsions in the engine process are possible.
Technical Paper

Characterization of Mixture Formation in a Direct Injected Spark Ignition Engine

2001-05-07
2001-01-1909
We have performed simulations and experiments to characterize the mixture formation in spray-guided direct injected spark ignition (DISI) gasoline engines and to help to understand features of the combustion process, which are characteristic for this engine concept. The 3-D computations are based on the KIVA 3 code, in which basic submodels of spray processes have been systematically modified at ETH during the last years. In this study, the break-up model for the hollow-cone spray typical for DISI engines has been validated through an extended comparison with both shadowgraphs and Mie-scattering results in a high-pressure-high-temperature, constant volume combustion cell at ambient conditions relevant for DISI operation, with and without significant droplet evaporation. Computational results in a single-cylinder research engine have been then obtained at a given engine speed for varying load (fuel mass per stroke), swirl and fuel injection pressure.
Technical Paper

Influence of EGR on Combustion and Exhaust Emissions of Heavy Duty DI-Diesel Engines Equipped with Common-Rail Injection Systems

2001-09-24
2001-01-3497
At the Internal Combustion Engines and Combustion Laboratory of the Swiss Federal Institute of Technology in Zurich we are currently developing low emission strategies for heavy duty diesel engines that engine manufacturers can implement to meet stringent emissions regulations. The technologies being studied include high-pressure fuel injection (with common-rail injection system), multiple injection strategies (with pilot or post injections), turbo charging, exhaust gas recirculation (cooled EGR), oxygenated fuels and the optimization of the air management system. This paper focuses on the effects of exhaust gas recirculation (cooled EGR) in combination with very high injection pressure. Measurements were carried out on a heavy-duty diesel single-cylinder research engine equipped with a modern common rail fuel injection. The engine investigations were conducted in different operating points in the engine map covering wide speed and load ranges.
Technical Paper

Characterization of Diesel Particulate Emissions in Heavy-Duty DI-Diesel Engines with Common Rail Fuel Injection Influence of Injection Parameters and Fuel Composition

2001-09-24
2001-01-3573
The findings presented in this paper result from a collaboration between two Federal Laboratories in Switzerland. In this research project the characteristics of the particulates from internal combustion engines were investigated in detail. Measurements were carried out on a single-cylinder research engine focusing on exhaust particulate matter emissions. The single-cylinder diesel engine is supercharged and features a common-rail direct injection system. This work analyzes the influence of fuel properties and injection parameters on the particulate number size distribution. For the fuel composition, five different fuels including low sulfur diesel, zero-sulfur and zero-aromatics diesel, two blending portions of oxygenated diesel additive and rapeseedmethylester were used. For the injection parameters the injection pressure, the start of injection and the fuel amount in the pilot- and in the post-injection phases were varied.
Technical Paper

Reduction of NOx Emissions of D. I. Diesel Engines by Application of the Miller-System: An Experimental and Numerical Investigation

1996-02-01
960844
Emissions and performance parameters of a medium size, medium speed D.I. diesel engine with increased charge air pressure and reduced but fixed inlet valve opening period have been measured and compared to the standard engine. While power output and fuel consumption are slightly improved, nitric oxide emissions can be reduced by up to 20%. The measurements confirm the results of simulations for both performance and emissions, for which a quasidimensional model including detailed chemistry for nitric oxide prediction has been developed.
Technical Paper

Numerical Investigation of Nozzle-Geometry Variations and Back-Pressure Changes on High Pressure Gas Injections under Application-Relevant Conditions

2018-04-03
2018-01-1138
In the present work numerical simulations were carried out investigating the effect of fuel type, nozzle-geometry variations and back-pressure changes on high-pressure gas injections under application-relevant conditions. Methane, hydrogen and nitrogen with a total pressure of 500 bar served as high-pressure fuels and were injected into air at rest at 200 bar and 100 bar. Different nozzle shapes were simulated and the analysis of the results lead to a recommendation for the most advantageous geometry regarding jet penetration, volumetric growth, mixing enhancement and discharge coefficient. Additionally an artificial inlet boundary conditions was tested for the use with real-gas thermodynamics and was shown to be capable of reducing the simulation time significantly.
Technical Paper

Experimental Investigation on the Gas Jet Behavior for a Hollow Cone Piezoelectric Injector

2014-10-13
2014-01-2749
Direct injection of natural gas in engines is considered a promising approach toward reducing engine out emissions and fuel consumption. As a consequence, new gas injection strategies have to be developed for easing direct injection of natural gas and its mixing processes with the surrounding air. In this study, the behavior of a hollow cone gas jet generated by a piezoelectric injector was experimentally investigated by means of tracer-based planar laser-induced fluorescence (PLIF). Pressurized acetone-doped nitrogen was injected in a constant pressure and temperature measurement chamber with optical access. The jet was imaged at different timings after start of injection and its time evolution was analyzed as a function of injection pressure and needle lift.
Technical Paper

Experimental Investigation on the Characteristics of Sprays Representative for Large 2-Stroke Marine Diesel Engine Combustion Systems

2015-09-01
2015-01-1825
Fuel spray propagation and its morphology are important aspects for the in-cylinder mixture preparation in Diesel engines. Since there is still a lack of suitable measurements with regard to large 2-stroke marine Diesel engines combustion systems, a comprehensive data set of spray characteristics has been investigated using a test facility reflecting the specific features of such combustion systems. The spray penetration, area and cone angle were analysed for a variation of gas density (including the behaviour at evaporation and non-evaporating conditions), injection pressure and nozzle diameter. Moreover, spray and swirl flow interaction as well as fuel quality influences have been studied. To analyse the impacts and effects of each measured parameter, an empirical correlation for the spray penetration has been derived and discussed for all measurements presented.
Technical Paper

Flamelet Generated Manifolds Applied to Dual-Fuel Combustion of Lean Methane/Air Mixtures at Engine Relevant Conditions Ignited by n Dodecane Micro Pilot Sprays

2019-04-02
2019-01-1163
In this study, a novel 3D-CFD combustion model employing Flamelet Generated Manifolds (FGM) for dual fuel combustion was developed. Validation of the platform was carried out using recent experimental results from an optically accessible Rapid Compression Expansion Machine (RCEM). Methane and n-dodecane were used as model fuels to remove any uncertainties in terms of fuel composition. The model used a tabulated chemistry approach employing a reaction mechanism of 130 species and 2399 reactions and was able to capture non-premixed auto ignition of the pilot fuel as well as premixed flame propagation of the background mixture. The CFD model was found to predict well all phases of the dual fuel combustion process: I) the pilot fuel ignition delay, II) the Heat Release Rate of the partially premixed conversion of the micro pilot spray with entrained methane/air and III) the sustained background mixture combustion following the consumption of the spray plume.
Technical Paper

Large Eddy Simulations and Tracer-LIF Diagnostics of Wall Film Dynamics in an Optically Accessible GDI Research Engine

2019-09-09
2019-24-0131
Large Eddy Simulations (LES) and tracer-based Laser-Induced Fluorescence (LIF) measurements were performed to study the dynamics of fuel wall-films on the piston top of an optically accessible, four-valve pent-roof GDI research engine for a total of eight operating conditions. Starting from a reference point, the systematic variations include changes in engine speed (600; 1,200 and 2,000 RPM) and load (1000 and 500 mbar intake pressure); concerning the fuel path the Start Of Injection (SOI=360°, 390° and 420° CA after gas exchange TDC) as well as the injection pressure (10, 20 and 35 MPa) were varied. For each condition, 40 experimental images were acquired phase-locked at 10° CA intervals after SOI, showing the wall-film dynamics in terms of spatial extent, thickness and temperature.
Technical Paper

CMC Model Applied to Marine Diesel Spray Combustion: Influence of Fuel Evaporation Terms

2014-10-13
2014-01-2738
This study presents an application of the conditional moment closure (CMC) combustion model to marine diesel sprays. In particular, the influence of fuel evaporation terms has been investigated for the CMC modeling framework. This is motivated by the fact that substantial overlap between the dense fuel spray and flame area is encountered for sprays in typical large two-stroke marine diesel engines which employ fuel injectors with orifice diameters of the order of one millimeter. Simulation results are first validated by means of experimental data from the Wärtsilä optically accessible marine spray combustion chamber in terms of non-reactive macroscopic spray development. Subsequently, reactive calculations are carried out and validated in terms of ignition delay time, ignition location, flame lift-off length and temporal evolution of the flame region. Finally, the influence of droplet terms on spray combustion is analyzed in detail.
X