Refine Your Search

Topic

Search Results

Technical Paper

In Cycle Pre-Ignition Diagnosis and Super-Knock Suppression by Employing Ion Current in a GDI Boosted Engine

2020-04-14
2020-01-1148
In this paper, a low-speed pre-ignition (LSPI) diagnostic strategy is designed based on the ion current signal. Novel diagnostic and re-injection strategies are proposed to suppress super-knock induced by pre-ignition within the detected combustion cycle. A parallel controller system that integrates a regular engine control unit (ECU) and CompactRIO (cRIO) from National Instruments (NI) is employed. Based on this system, the diagnostic and suppression strategy can be implemented without any adaptions to the regular ECU. Experiments are conducted on a 1.5-liter four-cylinder, turbocharged, direct-injected gasoline engine. The experimental results show two kinds of pre-ignition, one occurs spontaneously, and the other is induced by carbon deposits. Carbon deposits on the spark plug can strongly interfere with the ion current signal. By applying the ion current signal, approximately 14.3% of spontaneous and 90% of carbon induced pre-ignition cycles can be detected.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Journal Article

Study of the Combustion Characteristics of a HCCI Engine Coupled with Oxy-Fuel Combustion Mode

2017-03-28
2017-01-0649
The present work proposed to implement oxy-fuel combustion mode into a homogeneous charge compression ignition engine to reduce complexity in engine emissions after-treatment and lower carbon dioxide emission. The combination of oxy-fuel combustion mode with homogeneous charge compression ignition engine can be further optimized by the utilization of direct high temperature and pressure water injection to improve cycle performance. A retrofitted conventional diesel engine coupled with port fuel injection and direct water injection is utilized in this study. A self-designed oxygen and carbon dioxide mixture intake system with flexible oxygen fraction adjustment ability is implemented in the test bench to simulate the adoption of exhaust gas recirculation. Water injection system is directly installed in the combustion chamber with a modified high speed solenoid diesel injector.
Technical Paper

Characteristics of Combustion and Emissions in a DI Engine Fueled with Biodiesel Blends from Soybean Oil

2008-06-23
2008-01-1832
Combustion and emission characteristics of diesel and biodiesel blends (soybean methyl ester) were studied in a single-cylinder Direct Injection (DI) engine at different loads and a constant speed. The results show that NOx emission and fuel consumption are increased with increasing biodiesel percentage. Reduction of smoke opacity is significant at higher loads with a higher biodiesel ratio. Compared with the baseline diesel fuel, B20 (20% biodiesel) has a slight increase of NOx emission and similar fuel consumption. Smoke emission of B20 is close to that of diesel fuel. Results of combustion analysis indicate that start of combustion (SOC) for biodiesel blends is earlier than that for diesel. Higher biodiesel percentage results in earlier SOC. Earlier SOC for biodiesel blends is due to advanced injection timing from higher density and bulk modulus and lower ignition delay from higher cetane number.
Technical Paper

Characteristics of Output Performances and Emissions of Diesel Engine Employed Common Rail Fueled with Biodiesel Blends from Wasted Cooking Oil

2008-06-23
2008-01-1833
In this paper, the characteristics of performance and emissions of diesel and biodiesel blends are studied in a four-cylinder DI engine employing common rail injection system. The results show that engine output power is further reduced and brake specific fuel consumption (BSFC) increased with the increase of the blend concentration. B100 provides average reduction by 8.6% in power and increase by 11% in BSFC. With respect to the emissions, although NOx emissions were increased with increasing the blend concentration, the increase depends on the load. Filter smoke number is reduced with increasing the blend concentration. At the same time, NO, NO2 and other specific emissions are also investigated. In addition, difference of performance and emission between standard parameters of ECU and modified parameters of ECU is investigated for B10 and B20 based on same output power. The results show that NOx emission and FSN are still lower than baseline diesel.
Technical Paper

Characteristics of Particulates and Exhaust Gases Emissions of DI Diesel Engine Employing Common Rail Fuel System Fueled with Bio-diesel Blends

2008-06-23
2008-01-1834
In this paper, characteristics of gas emission and particle size distribution are investigated in a common rail diesel engine fueled with biodiesel blends. Gas emission and particle size distribution are measured by AVL FTIR - SESAM and SMPS respectively. The results show that although biodiesel blends would result in higher NOx emissions, characteristics of NOx emissions were also dependent on the engine load for waste cooking oil methyl ester. Higher blend concentration results in higher NO2 emission after two diesel oxidation catalyst s (DOC). A higher blend concentration leads to lower CO and SO2 emissions. No significant difference of Alkene emission is found among biodiesel blends. The particle size distributions of diesel exhaust aerosol consist of a nucleation mode (NM) with a peak below 50N• m and an accumulation mode with a peak above 50N • m. B100 will result in lower particulates with the absence of NM.
Technical Paper

Effect of Additives on Diesel Spray Flames in a Controllable Active Thermo-Atmosphere

2008-04-14
2008-01-0931
The active components, such as OH and their concentrations in the coflow, have a strong effect on the combustion process of diesel fuel spray flames in the Controllable Active Thermo-Atmosphere (CATA), which then will affect the soot incandescence of the spray flames. CO2 and H2O2, the additives which have contrary effect on the concentration of the active components, were mixed separately into the thermo-atmosphere before the jet spray were issued into the coflow, which changed the boundary condition around the central jet and influenced the combustion characteristics and soot incandescence. The combustion characteristics such as ignition delay and flame liftoff height of the central spray flames are measured and the linkage between these two parameters is investigated at different coflow temperatures.
Technical Paper

Material Compatibilities of Biodiesels with Elastomers, Metals and Plastics in a Diesel Engine

2009-11-02
2009-01-2799
The effects of biodiesel on the swelling of the elastomers and plastics and the corrosion of metals are studied by the immersion tests. The results indicate that biodiesels make little corrosion effect on aluminum, steel and little swelling impact on plastics, but a significant corrosion may be taken place on cooper and brass for some sourced biodiesels. For nitrile-butadiene rubber, the variation of swelling properties in biodiesels is slightly higher than that in diesel. For the non-diesel-resistant elatomers, the variation of swelling properties is lower than those in diesel. The production process and biodiesel source have an influence on the result of elastomer swelling and corrosion. The relationship between the impact of biodiesel on materials and biodiesels properties are also discussed.
Technical Paper

Fuel Injection Optimization during Engine Quick Start by Means of Cycle-by-Cycle Control Strategy for HEV Application

2009-11-02
2009-01-2718
Engine-off strategy are popular used in hybrid electric vehicles (HEV) for fuel saving. The engine of an HEV will start and stop frequently according to the road condition. In order to obtain excellent fuel economy and emissions performance, the fuel injection during engine quick start should be optimized. In this paper, the characteristic of mixture formation and the HC emissions at the first 5 cycles which contribute the most HCs were investigated. After the analysis of mixture preparation during start process, the HC emissions during engine quick start were optimized by means of cycle-by-cycle fuel injection control strategy. The fuel mixture concentration during start-up process fluctuates more dramatically under hot start condition. Typically, the mixture at 4th and 5th cycle is over-riched. Based on the original engine calibration, the fuel injection at the initial 5 cycles was optimized respectively.
Technical Paper

Misfiring Control in Current Cycle at Engine Start Employing Ion Sensing Technology

2009-11-02
2009-01-2713
In this paper a method of misfiring control in current cycle at engine start is presented. With this novel method, the high HC emissions of gasoline engine employed in traditional or hybrid electrical vehicles will be avoided. By the feedback of ion current signal, misfire phenomenon is identified within 30 degrees crank angle after spark plug ignited. Then, the ignition coil will be recharged and the plug sparked again to promote air fuel mixture oxidation and deplete the unburned hydrocarbon produces in exhaust gas. On the other hand, too late ignition will not always result in normal combustion, a kind of reaction similar with slow oxidation also occurs in such case.
Technical Paper

Compatibility of Biodiesels and Their Blends with Typical Rubbers and Copperish Metals

2010-04-12
2010-01-0476
The swelling of ‘O’ rings of 3 typical rubbers (NBR, FKM, EPDM) and the corrosion of 2 typical copperish metal pieces (Copper, Brass) were investigated. The fuel samples included 14 kinds of biodiesels, 1 kind of diesel, and 4 kinds of blends respectively for 2 kinds of biodiesels. The changes in mass and size of ‘O’ rings were measured with an electronic balance and a vernier caliper. The surface corrosion of copperish metals was recorded with photos. It was found that the swelling of NBR in pure biodiesels were generally larger than those in diesel. The mass and size of FKM almost did not change in both pure biodiesels and diesel. The swelling of EPDM became less in pure biodiesels than that in diesel. When the blend ratios of biodiesels were less than 10%, the change rates in mass, inner diameter and section diameter of NBR, FKM and EPDM were similar between blended fuels and diesel.
Technical Paper

Stratified Mixture Formation and Combustion Process for Wall-guided Stratified-charge DISI Engines with Different Piston Bowls by Simulation

2010-04-12
2010-01-0595
This paper presents the simulation of in-cylinder stratified mixture formation, spray motion, combustion and emissions in a four-stroke and four valves direct injection spark ignition (DISI) engine with a pent-roof combustion chamber by the computational fluid dynamics (CFD) code. The Extended Coherent Flame Combustion Model (ECFM), implemented in the AVL-Fire codes, was employed. The key parameters of spray characteristics related to computing settings, such as skew angle, cone angle and flow per pulse width with experimental measurements were compared. The numerical analysis is mainly focused on how the tumble flow ratio and geometry of piston bowls affect the motion of charge/spray in-cylinder, the formation of stratified mixture and the combustion and emissions (NO and CO₂) for the wall-guided stratified-charge spark-ignition DISI engine.
Technical Paper

Spray Characteristics of Biodiesel and Diesel Fuels under High Injection Pressure with a Common Rail System

2010-10-25
2010-01-2268
Biodiesel has been paid more and more attention as a renewable fuel due to some excellent properties such as renewable, high cetane number, ultralow sulfur content, no aromatic hydrocarbon, high flash point, low CO2 emission when compared with diesel. While others physical properties like high viscosity, high surface tension, big density and bad volatility would spoil the spray characteristics of biodiesel fuel, which will affect the thermal efficiency when running in diesel engine. Accompanied with constant volume vessel and high speed video camera system, a high pressure common rail system, which could provide an injection pressure of 180 MPa, is used to investigate the characteristics of jatropha curcas biodiesel, palm oil biodiesel and diesel fuel. The effects of injection pressures and ambient densities on spray characteristics of these fuels are studied.
Technical Paper

Combustion and Emissions of Ethanol Fuel (E100) in a Small SI Engine

2003-10-27
2003-01-3262
An air-cooled, four-stroke, 125 cc electronic gasoline fuel injection SI engine for motorcycles is altered to burn ethanol fuel. The effects of nozzle orifice size, fuel injection duration, spark timing and the excess air/ fuel ratio on engine power output, fuel and energy consumptions and engine exhaust emission levels are studied on an engine test bed. The results show that the maximum engine power output is increased by 5.4% and the maximum torque output is increased by 1.9% with the ethanol fuel in comparison with the baseline. At full load and 7000 r/min, HC emission is decreased by 38% and CO emission is decreased 46% on average over the whole engine speed range. However, NOx levels are increased to meet the maximum power output. The experiments of the spark timing show that the levels of HC and NOx emission are decreased markedly by the delay of spark timing.
Technical Paper

Effect of First Cycle Fuel Injection Timing on Performance of a PFI Engine during Quick Start for HEV Application

2011-04-12
2011-01-0886
Idle stopping is one of the most important fuel saving methods for hybrid electric vehicle (HEV). While the enriched injection strategy which was employed to ensure reliable ignition of first cycle will leads to even more fuel film stayed in the intake port, all of the liquid film will evaporate randomly and interfere the mixture air-fuel ratio of the followed cycles. The fuel transport of the first cycle should be enhanced to reduce the residual fuel film, and then the control of the cycle-by-cycle air-fuel ratio will become easier and the combustion and HC emissions will also be better. In this paper the mixture preparation characteristics of the unfired first cycle, as well as the combustion and HC emissions characteristics of the fired first cycle under various injection timing strategies such as close-valve injection, mid-valve injection, and open-valve injection were investigated.
Technical Paper

Transient Characteristics of Cold Start Emissions from a Two-Stage Direct Injection Gasoline Engines Employing the Total Stoichiometric Ratio and Local Rich Mixture Start-up Strategy

2012-04-16
2012-01-1068
To improve the cold start performance and to reduce the misfire occurrence at cold start, the start-up strategy of total stoichiometric ratio combined with local rich mixture was applied in the study. The effect of injection strategy (the 1st injection timing, 2nd injection timing, 1st and 2nd fuel injection proportion and ignition timing) on the cold start HC emissions in the initial 10 cycles were investigated in a Two stage direct injection (TSDI) gasoline engine. The transient HC and NO emissions in the initial 10 cycles were analyzed, when the fuels are injected in the only 1st cycle and in the followed all cycles. The transient misfiring HC emissions were compared between the single and two-stage injection modes. In addition, the unburned HC (UBHC) emissions in the 1st cycle are compared among the TSDI engine, Gasoline direct injection (GDI) engine, Port fuel injection (PFI) engine and Liquefied petroleum gaseous (LPG) engine at the stoichiometric ratio.
Technical Paper

A Novel Closed Loop Control based on Ionization Current in Combustion Cycle at Cold Start in a GDI Engine

2012-04-16
2012-01-1339
As the invalidation of the oxygen sensor in the initial cycles at cold start, the engine can not operate based on the closed loop control based on oxygen sensor. And it may result in the misfire events and higher hydrocarbon (HC) emissions during this period. To solve this problem, a novel closed loop control based on ionization current in combustion cycle is proposed. The in-cylinder combustion quality is monitored by means of the ion current detection technique; meanwhile, if the misfire event is detected in the combustion cycle, the spark re-ignition is made in the current combustion cycle. In addition, to optimize the combustion and reduce HC emissions during cold start, the fuel injection quantity and ignition timing in the next cycle are adjusted based on the current ion current signal.
Technical Paper

Investigations on Mixture Formation during Start-UP Process of a Two-Stage Direct Injection Gasoline Engine for HEV Application

2013-10-14
2013-01-2657
A cycle-resolved test system was designed in a Two Stage Direct Injection (TSDI) Gasoline engine to simulate the engine quick start process in an Integrated Start and Generator (ISG) Hybrid Electric Vehicle (HEV) system. Based on the test system, measurement of the in cylinder HC concentrations near the spark plug under different engine coolant temperature and cranking speed conditions were conducted using a Fast Response Flame Ionization Detector (FFID) with Sampling Spark Plug (SSP) fits, then the in-cylinder equivalence ratio near the spark plug was estimated from the measured HC concentrations. In addition, the effects of the 1st injection timing, 2nd injection timing, and total equivalence ratio on the mixture formation near the spark plug were analyzed by means of experiments.
Technical Paper

Experimental Study of Biodiesel Spray and Combustion Characteristics

2006-10-16
2006-01-3250
In this paper, the spray and combustion characteristics of biodiesel and diesel were investigated. The spray pictures of single injection, by means of a diesel pump test-bed, were taken by a high-speed camera video system in an atmospheric condition, and the effects of the pump speed, nozzle orifice diameter and nozzle opening pressure on the fuel spray structure and characteristics were studied under atmosphere condition. The results showed that the general law of biodiesel spray characteristics was similar to that of diesel. However, the spray penetration of biodiesel was longer than that of diesel, and the spray angles of biodiesel were only half angle of diesel. The experiment of combustion characteristics was conducted in a vitiated coflow combustor with the same diesel pump test-bed. The images of combustion flame were recorded by the high-speed camera system. Then the ignition characteristics were evaluated from the digital pictures by computer.
Technical Paper

Investigation of Cold-start Based on Cycle-by-Cycle Control Strategy in an EFI LPG Engine

2004-10-25
2004-01-3059
This paper presents an investigation of cold starts based on a cycle-by-cycle control strategy in an LPG EFI engine. Experiments were carried out in a four-stroke, water-cooled, single cylinder, 125cc SI engine with an EFI system. Effects of the first injection pulse width and the first combustion cycle on the characteristics of the cold-start were analyzed based on the histories of transient engine speeds and cylinder pressures. The study focuses on how to realize the controllable ignition cycle and the single-cycle and multi-cycle combustions were tested based on the single starting injection pulse width. Test results show that the first combustion cycle has an important effect on HC emission and combustion stability of following cycles at cold-start. The injection pulse width is the key factor determining the characteristics of an ignition cycle during the cold-start.
X