Refine Your Search

Topic

Search Results

Standard

Valve Guide Information Report

2017-12-20
CURRENT
J1682_201712
This SAE Information Report provides: a Types of valve guides and their nomenclature b Valve guide alloy designations and their chemistries c Valve guide alloy metallurgy d Typical mechanical and physical properties of guide alloys e Typical dimensional tolerances of valve guides and their counterbores f Recommended interference fits g Installation procedures h Application considerations
Standard

VALVE GUIDE INFORMATION REPORT

1993-09-10
HISTORICAL
J1682_199309
This SAE Information Report provides: a Types of valve guides and their nomenclature b Valve guide alloy designations and their chemistries c Valve guide alloy metallurgy d Typical mechanical and physical properties of guide alloys e Typical dimensional tolerances of valve guides and their counterbores f Recommended interference fits g Installation procedures h Application considerations
Standard

MAGNETIC PARTICLE INSPECTION

1991-03-01
HISTORICAL
J420_199103
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Magnetic Particle Inspection

2018-01-10
CURRENT
J420_201801
The scope of this SAE Information Report is to provide general information relative to the nature and use of magnetic particles for nondestructive testing. The document is not intended to provide detailed technical information, but will serve as an introduction to the theory and capabilities of magnetic particle testing, and as a guide to more extensive references.
Standard

Use of Terms Yield Strength and Yield Point

2017-10-10
CURRENT
J450_201710
The purpose of this SAE Recommended Practice is to describe the terms yield strength and yield point. Included are definitions for both terms and recommendations for their use and application.
Standard

OIL-TEMPERED CHROMIUM-VANADIUM VALVE SPRING QUALITY WIRE AND SPRINGS

1994-06-01
HISTORICAL
J132_199406
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the processing requirements of spring fabricated from this wire.
Standard

Oil-Tempered Chromium-Vanadium Valve Spring Quality Wire and springs

1998-06-01
CURRENT
J132_199806
This SAE Recommended Practice covers the mechanical and chemical requirements of oil-tempered chromium-vanadium valve spring quality wire used for the manufacture of engine valve springs and other springs used at moderately elevated temperatures and requiring high fatigue properties. It also covers the processing requirements of spring fabricated from this wire.
Standard

Oil-Tempered Carbon-Steel Valve Spring Quality Wire and Springs

1998-06-01
CURRENT
J351_199806
This SAE Recommended Practice covers the physical and chemical requirements of oil- tempered carbon-steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This document also covers the processing requirements of springs fabricated from this wire.
Standard

OIL-TEMPERED CARBON-STEEL VALVE SPRING QUALITY WIRE AND SPRINGS

1994-06-01
HISTORICAL
J351_199406
This SAE Recommended Practice covers the physical and chemical requirements of oil-tempered carbon-steel valve spring quality wire used for the manufacture of engine valve springs and other springs requiring high-fatigue properties. This document also covers the basic processing requirements of springs fabricated from this wire.
Standard

Hydrogen Embrittlement Testing of Ultra High Strength Steels and Stampings by Acid Immersion

2023-03-08
CURRENT
J3215_202303
This standard describes a test method for evaluating the susceptibility of uncoated cold rolled and hot rolled Ultra High Strength Steels (UHSS) to hydrogen embrittlement. The thickness range of materials that can be evaluated is limited by the ability to bend and strain the material to the specified stress level in this specification. Hydrogen embrittlement can occur with any steel with a tensile strength greater than or equal to 980 MPa. Some steel microstructures, especially those with retained austenite, may be susceptible at lower tensile strengths under certain conditions. The presence of available hydrogen, combined with high stress levels in a part manufactured from high strength steel, are necessary precursors for hydrogen embrittlement. Due to the specific conditions that need to be present for hydrogen embrittlement to occur, cracking in this test does not indicate that parts made from that material would crack in an automotive environment.
Standard

WELDING, BRAZING, AND SOLDERING—MATERIALS AND PRACTICES

1983-06-01
HISTORICAL
J1147_198306
The Joint AWS/SAE Committee on Automotive Welding was organized on January 16, 1974, for the primary purpose of facilitating the development and publication of various documents related to the selection, specification, testing, and use of welding materials and practices, particularly for the automotive and related industries. A secondary purpose is the dissemination of technical information.
Standard

Welding, Brazing, and Soldering - Materials and Practices

2018-01-09
CURRENT
J1147_201801
The Joint AWS/SAE Committee on Automotive Welding was organized on January 16, 1974, for the primary purpose of facilitating the development and publication of various documents related to the selection, specification, testing, and use of welding materials and practices, particularly for the automotive and related industries. A secondary purpose is the dissemination of technical information.
Standard

Potential Standard Steels

2000-11-10
HISTORICAL
J1081_200011
This SAE Information Report provides a uniform means of designating wrought steels during a period of usage prior to the time they meet the requirements for SAE standard steel designation. The numbers consist of the prefix PS1 followed by a sequential number starting with 1. A number once assigned is never assigned to any other composition. A PS number may be obtained for steel composition by submitting a written request to SAE Staff, indicating the chemical composition and other pertinent characteristics of the material. If the request is approved according to established procedures, SAE Staff will assign a PS number to the grade. This number will remain in effect until the grade meets the requirements for an SAE standard steel or the grade is discontinued according to established procedures. Table 1 is a listing of the chemical composition limits of potential standard steels which were considered active on the date of the last survey prior to the date of this report.
X