Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimization of a CNG Driven SI Engine Within a Parallel Hybrid Power Train by Using EGR and an Oversized Turbocharger with Active-WG Control

The hybrid power train technology offers various prospects to optimize the engine efficiency in order to minimize the CO₂ emissions of an internal-combustion-engine-powered vehicle. Today different types of hybrid architectures like parallel, serial, power split or through-the-road concepts are commonly known. To achieve lowest fuel consumption the following hybrid electric vehicle drive modes can be used: Start/Stop, pure electric/thermal driving, recuperation of brake energy and the hybrid mode. The high complexity of the interaction between those power sources requires an extensive investigation to determine the optimal configuration of a natural-gas-powered SI engine within a parallel hybrid power train. Therefore, a turbocharged 1.0-liter 3-cylinder CNG engine was analyzed on the test bench. Using an optimized combustion strategy, the engine was operated at stoichiometric and lean air/fuel ratio applying both high- and low-pressure EGR.
Technical Paper

Investigation on different Injection Strategies in a Direct-Injected Turbocharged CNG-Engine

Natural gas as a fuel for internal combustion engines is a combustion technology showing great promise for the reduction of CO2 and particulate matter. To demonstrate the potential of natural gas direct injection, especially in combination with supercharging, some experimental investigations were carried out using a single-cylinder engine unit with lateral injector position. For this purpose different injection valve nozzles, piston crown geometries as well as operating strategies were investigated. First experimental results show that it is also possible to better support the combustion process by providing a late injection of a part of the fuel, near ignition point, so that the additional induced turbulence can speed up the flame propagation 1 Mixture formation with gaseous fuels due to its low mass density is more critical than in gasoline engines, because even high injection velocities still produce very low fuel penetration.
Technical Paper

Potentials of Phlegmatization in Diesel Hybrid Electric Vehicles

An approach for model-based control strategy design for diesel hybrid drive-trains has been developed, permitting the reduction of fuel consumption as well as of exhaust gas emissions. The control strategy consists of four core-functions: the SOC-management, the operation mode determination, the gear selection, and the thermal monitoring. Based on those different interpretations, a control strategy can be designed that leads to great reductions in fuel consumption or alternatively to a mentionable decline of nitrous oxides. In this trade-off, both aims can not be optimized at a time. Though, the strategy to be used is a compromise, designs for control strategies are possible that reduce both for a significant amount. Extending this control strategy by adding functions for transient behavior at start-up and load changes; phlegmatization enables additional potentials for emission reduction.