Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Factors Influencing Roof-to-Ground Impact Severity: Video Analysis and Analytical Modeling

2007-04-16
2007-01-0726
This paper explores the dynamics of rollover crashes and examines factors that influence the severity of the roof-to-ground impacts that occur during these crashes. The paper first reports analysis of 12 real-world rollover accidents that were captured on video. Roll rate time histories for the vehicles in these accidents are reported and the characteristics of these curves are analyzed. Next, the paper uses analytical modeling to explore the influence that the trip phase characteristics may have on the severity of roof-to-ground impacts that occur during the roll phase. Finally, the principle of impulse and momentum is used to derive an analytical impact model for examining the mechanics of a roof-to-ground impact. This modeling is used to identify the influence of various impact conditions on the severity of a roof-to-ground impact.
Technical Paper

The Influence of Vehicle-to-Ground Impact Conditions on Rollover Dynamics and Severity

2008-04-14
2008-01-0194
This paper explores the influence of the impact conditions on the dynamics and the severity of rollover crashes. Causal connections are sought between the impact conditions and the crash attributes to which they lead. The paper begins by extending previously presented equations that describe the dynamics of an idealized vehicle-to-ground impact. It then considers the behavior of these equations under a variety of impact conditions that occur during real-world rollovers. Specifically, the equations of this impact model are used to explore the ways in which and the extent to which rollover dynamics and severity are influenced by the following factors: (1) the vehicle's shape and its orientation at impact, (2) its weight, center-of-mass location, and roll moment of inertia, (3) its translational speed, (4) its downward velocity, and (5) its roll velocity. Throughout this discussion, data from real-world and staged rollover crashes is used to give the parameter study an empirical basis.
Technical Paper

Analysis of a Dolly Rollover with PC-Crash

2009-04-20
2009-01-0822
This paper evaluates the use of PC-Crash simulation software for modeling the dynamics of a dolly rollover crash test. The specific test used for this research utilized a Ford sport utility vehicle and was run in accordance with SAE J2114. Scratches, gouges, tire marks and paint deposited on the test surface by the test vehicle were documented photographically and by digital survey and a diagram containing the layout of these items was created. The authors reviewed the test video to determine which part of the vehicle deposited each of these pieces of evidence. Position and orientation data for the vehicle in the test were then obtained using video analysis techniques. This data was then analyzed to determine the vehicle’s translational and rotational velocities throughout the test. Next, the test was modeled using PC-Crash.
Technical Paper

An Analytical Review and Extension of Two Decades of Research Related to PC-Crash Simulation Software

2018-04-03
2018-01-0523
PC-Crash is a vehicular accident simulation software that is widely used by the accident reconstruction community. The goal of this article is to review the prior literature that has addressed the capabilities of PC-Crash and its accuracy and reliability for various applications (planar collisions, rollovers, and human motion). In addition, this article aims to add additional analysis of the capabilities of PC-Crash for simulating planar collisions and rollovers. Simulation analysis of five planar collisions originally reported and analyzed by Bailey [2000] are reexamined. For all five of these collisions, simulations were obtained with the actual impact speeds that exhibited excellent visual agreement with the physical evidence. These simulations demonstrate that, for each case, the PC-Crash software had the ability to generate a simulation that matched the actual impact speeds and the known physical evidence.
Technical Paper

Validation of the PC-Crash Single-Track Vehicle Driver Model for Simulating Motorcycle Motion

2024-04-09
2024-01-2475
This paper validates the single-track vehicle driver model available in PC-Crash simulation software. The model is tested, and its limitations are described. The introduction of this model eliminated prior limitations that PC-Crash had for simulating motorcycle motion. Within PC-Crash, a user-defined path can be established for a motorcycle, and the software will generate motion consistent with the user-defined path (within the limits of friction and stability) and calculate the motorcycle lean (roll) generated by following that path at the prescribed speed, braking, or acceleration levels. In this study, the model was first examined for a simple scenario in which a motorcycle traversed a pre-defined curve at several speeds. This resulted in the conclusion that the single-track driver model in PC-Crash yielded motorcycle lean angles consistent with the standard, simple lean angle formula widely available in the literature.
X