Refine Your Search

Search Results

Technical Paper

Elimination of Combustion Difficulties in a Glow Plug-Assisted Diesel Engine Operated with Pure Ethanol and Water-Ethanol Mixtures

Forced ignition with glow plugs has great potential for the utilization of alcohol fuels in diesel engines. However, the installation of glow plugs may cause misfiring or knocking in parts of the operating range. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a glow plug-assisted diesel engine; these factors may be classified into two categories: the factors related to the temperature history of the drop lets before contact with the glow plug, and those related to the probability of contact. By optimizing these factors, the combustion difficulties were successfully eliminated over the whole operating range, and engine performance comparable with conventional diesel operation was achieved.
Technical Paper

The Effects of Flash Boiling Fuel Injection on Spray Characteristics” Combustion, and Engine Performance in DI and IDI Diesel Engines

This paper deals with the effects of flash-boiling injection of various kinds of fuels on spray characteristics, combustion, and engine performance in DI and IDI diesel engines. It is known that spray characteristics change dramatically at the boiling point of fuel. When the fuel temperature increases above the boiling point, the droplet size decreases apparently and the spray spreads much wider. At higher fuel temperatures, above the boiling point, the apparent effects are a lower smoke density and improved thermal efficiency at higher loads, resulting from the shorter combustion duration; it is thus possible to obtain a markedly improved engine performance in engines with a low air-utilization chamber. Remarkable changes in heat release with the increase in fuel temperature are; an increase in premised combustion quantity and shortening of the combustion duration. The changes in smoke emission and thermal efficiency for different engine types are also considered in this paper.
Technical Paper

Description and Analysis of Diesel Engine Rate of Combustion and Performance Using Wiebe's Functions

Two laboratory engines, one direct, injection and one indirect injection, were operated for a range of speeds, loads, injection timings, fuels, and steady and transient conditions. Rate of combustion data were derived and analyzed using a double Wiebe's function approximation. It is shown that three of the six function parameters are constant for a wide range of conditions and that the other three can be expressed as linear functions of the amount of fuel injected during ignition lag. Engine noise, smoke, and thermal efficiency correlate with the parameters describing the amount of premixed combustion and diffusive combustion duration. These characteristics may be optimized by reducing the quantity of premixed combustion while maintaining the duration of diffusive combustion to less than 60°CA.
Technical Paper

Low Carbon Flower Buildup, Low Smoke, and Efficient Diesel Operation with Vegetable Oils by Conversion to Mono-Esters and Blending with Diesel Oil or Alcohols

The purpose of this investigation is to evaluate the feasibility of rapeseed oil and palm oil for diesel fuel substitution in a naturally aspirated D.I. diesel engine, and also to find means to reduce the carbon deposit buildup in vegetable oil combustion. In the experiments, the engine performance, exhaust gas emissions, and carbon deposits were measured for a number of fuels: rapeseed oil, palm oil, methylester of rapeseed oil, and these fuels blended with ethanol or diesel fuel with different fuel temperatures. It was found that both of the vegetable oil fuels generated an acceptable engine performance and exhaust gas emission levels for short term operation, but they caused carbon deposit buildups and sticking of piston rings after extended operation.
Technical Paper

Effects of Combustion and Injection Systems on Unburnt HC and Particulate Emissions from a DI Diesel Engine

This paper is a systematic investigation of the effects of combustion and injection systems on hydrocarbon(HC) and particulate emissions from a DI diesel engine. Piston cavity diameter, swirl ratio, number of injection nozzle openings, and injection direction are varied as the experimental parameters, and the constituents in the soluble organic fraction (SOF) of the particulate were analyzed. The results show that the emission characteristics of deep dish chambers greatly differ from those of shallow dish chambers varying with the number of nozzle openings, the injection direction, and swirl intensity. The HC analysis shows mainly low carbon number gaseous HC constituents, and there is a tendency towards increasing polynucleation of polynuclear aromatic hydrocarbon(PAH) in SOF with increasing soot formation.
Technical Paper

Effects of Super Heating of Heavy Fuels on Combustion and Performance in DI Diesel Engines

This paper is concerned with the effects of temperature of heavy fuels on combustion and engine performance in a naturally aspirated DI diesel engine. Engine performance and exhaust gas emissions were measured for rapeseed oil, B-heavy oil, and diesel fuel at fuel temperatures from 40°C to 400°C. With increased fuel temperature, mainly from improved efficiency of combustion there were significant reductions in the specific energy consumption and smoke emissions. It was found that the improvements were mainly a function of the fuel viscosity, and it was independent of the kind of fuel. The optimum temperature of the fuels with regard to specific energy consumption and smoke emission is about 90°C for diesel fuel, 240°C for B-heavy oil, and 300°C for rapeseed oil. At these temperatures, the viscosities of the fuels show nearly identical value, 0.9 - 3 cst. The optimum viscosity tends to increase slightly with increases in the swirl ratio in the combustion chamber.
Technical Paper

The Influence of Fuel Properties on Diesel-Soot Suppression with Soluble Fuel Additives

Diesel soot suppression effects of catalytic fuel additives for a range of fuels with different properties were investigated with calcium naphthenate. A single cylinder DI diesel engine and a thermobalance were used to determine the soot reduction and its mechanism for seven kinds of fuels. Experimental results showed that the catalytic effect of the fuel additive was different for the different fuels, and could be described by a parameter considering cetane number and kinematic viscosity. The fuel additives reduced soot more effectively for fuels with higher cetane number and lower kinematic viscosity. This result was explained by soot oxidation characteristics for the different fuels. Oxidation of soot with the metallic additive proceeds in two stages: stage I, a very rapid oxidation stage; and stage II, a following slow or ordinary oxidation stage.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Description of Diesel Emissions by Individual Fuel Properties

The effects of several fuel property variables on the emissions from a D.I. diesel engine were individually analyzed. The results showed that the smoke and dry soot increased with increased kinematic viscosity, shorter ignition lag, and higher aromatic content, especially at high equivalence ratios. Over the whole range of equivalence ratios, SOF depended on and increased with only ignition lag. The NOx improved slightly with increased kinematic viscosity, higher ignitability, and decreased aromatic content. The unburnt HC also improved with decreased kinematic viscosity and higher ignitability. The distribution shape of distillation curves had little influence on the emissions.
Technical Paper

Ultra Low Emission and High Performance Diesel Combustion with Highly Oxygenated Fuel

Significant improvements in exhaust emissions and engine performance in an ordinary DI diesel engine were realized with highly oxygenated fuels. The smoke emissions decreased sharply and linearly with increases in oxygen content and entirely disappeared at an oxygen content of 38 wt-% even at stoichiometric conditions. The NOx, THC, and CO were almost all removed with a three-way catalyst under stoichiometric diesel combustion at both the higher and lower BMEP with the combination of EGR and a three-way catalyst. The engine output for the highly oxygenated fuels was significantly higher than that with the conventional diesel fuel due to the higher air utilization.
Technical Paper

Combustion Behaviors Under Accelerating Operation of an IDI Diesel Engine

In a four-cycle, naturally aspirated, pre-chamber diesel engine, the combustion characteristics such as the rates of fuel injection, the ignition lag, the rates of heat release, the combustion peak pressure, the maximum rates of pressure rise, and the smoke density, were investigated for over 70 consecutive cycles under acceleration, with the aid of an on-line data handling system developed for this experiment. The effects of operating conditions such as the fuel injection timing, the fuel spray angle, the wall temperature of the combustion chamber, and the coolant temperature, on the combustion characteristics were also investigated.
Technical Paper

Nature of Fundamental Parameters Related to Engine Combustion for a Wide Range of Oxygenated Fuels

The fundamental parameters related to engine combustion and performances, such as, heating value, theoretical air-fuel ratio, adiabatic flame temperature, carbon dioxide (CO2), and nitric oxide (NO) emissions, specific heat and engine thermal efficiency were investigated with computations for a wide range of oxygenated fuels. The computed results showed that almost all of the above combustion-related parameters are closely related to oxygen content in the fuels regardless of the kinds or chemical structures of oxygenated fuels. An interesting finding was that with the increase in oxygen content in the fuels NO emission decreased linearly, and the engine thermal efficiency was almost unchanged below oxygen content of 30 wt-% but gradually decreased above 30 wt-%.
Technical Paper

Catalytic Effects of Metallic Fuel Additives on Oxidation Characteristics of Trapped Diesel Soot

The oxidations of Crapped diesel soots containing catalytic metals such as Ca, Ba, Fe, or Ni were characterized through thermogravimetric analysis with a thermobalance. Soot particles were generated by a single cylinder IDI diesel engine with metallic fuel additives. A two-stage oxidation process was observed with the metalcontalning soots. It was found that the first stage of oxidation is catalytically promoted by metal additives resulting in an enhanced reaction rate and a reduced activation energy. Soot reduction in the rapid first stage increases with increases in metal content. Soots containing Ba and Ca are oxidized most rapidly due to the larger reduction during the first stage. The second stage of oxidation is also slightly promoted by metal addition. The ignition temperature of the collected soot is substantially reduced by the metal additives.
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
Technical Paper

Simultaneous Reductions in Diesel NOx and Smoke Emissions with Aqueous Metal-Salt Solutions Directly Injected into the Combustion Chamber

The effect of several aqueous metal-salt solutions on NOx and smoke lowering in an IDI diesel engine were examined. The solutions were directly injected into a divided chamber independent of the fuel injection. The results showed that significant lowering in NOx and smoke over a wide operation range could be achieved simultaneously with alkali metal solutions which were injected just prior to the fuel injection. With sodium-salt solutions, for instance, NOx decreased by more than 60 % and smoke decreased 50 % below conventional operation. The sodium-salt solution reduced dry soot significantly, while total particulate matter increased with increases in the water soluble fractions.
Technical Paper

Combination of Combustion Concept and Fuel Property for Ultra-Clean DI Diesel

Experimental investigations were previously conducted with a direct-injection diesel engine with the aim of reducing exhaust emissions, especially nitrogen oxides (NOx) and particulate matter (PM). As a result of that work, a combustion concept, called Modulated Kinetics (MK) combustion, was developed that reduces NOx and smoke simultaneously through low-temperature combustion and premixed combustion to achieve a cleaner diesel engine. In subsequent work, it was found that applying a low compression ratio was effective in expanding the MK combustion region on the high-load side. The MK concept was then combined with an exhaust after-treatment system and applied to a test vehicle. The results indicated the attainment of ULEV emission levels, albeit in laboratory evaluations. In the present work, the combination of the MK combustion concept and certain fuel properties has been experimentally investigated with the aim of reducing exhaust emissions further.
Technical Paper

Cycle-to-cycle Transient Characteristics of Diesel Emissions during Starting

Changes in exhaust gas emissions during starting in a DI diesel engine were investigated. The THC after starting increased until around the 50th cycle when the fuel deposited on the combustion chamber showed the maximum, and THC then decreased to reach a steady value after about 1000 cycles when the piston wall temperature became constant. The NOx showed an initial higher peak just after starting, and increased to a steady value after about 1000 cycles. Exhaust odor had a strong correlation with THC, and at the early stage odor was stronger than would be expected from the THC concentration. The THC increased with increased fuel injection amounts, decreased cranking speeds, and fuels with higher viscosity, higher 90% distillation temperature, and lower ignitability.
Technical Paper

Time-Resolved Behavior of Unburned Hydrocarbon Components in Diesel Exhaust Under Transient Operations

Time resolved changes in unburned hydrocarbon emissions and their components were investigated in a DI diesel engine with a specially developed gas sampling system and gas chromatography. The tested transient operations include starting and increasing loads. At start-up with high equivalence ratios the total hydrocarbon (THC) at first increased, and after a maximum gradually decreased to reach a steady state value. Reducing the equivalence ratio of the high fueling at start-up and shortening the high fueling duration are effective to reduce THC emissions as long as sufficient startability is maintained. Lower hydrocarbons, mainly C1-C8, were the dominant components of the THC and mainly determined the THC behavior in the transient operations while the proportion of hydrocarbon (HC) components did not significantly change. The unregulated toxic substances, 1,3 butadiene and benzene were detected in small quantities.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
Technical Paper

Improvement of Diesel Combustion and Emissions with Addition of Various Oxygenated Agents to Diesel Fuels

The effect of eight kinds of oxygenated agents added to diesel fuels on the combustion and emissions was investigated in a DI diesel engine. The results showed significant smoke and particulate suppression without increases in NOx with every oxygenated agent. The emissions decreased linearly with increasing oxygen content in the fuels, almost regardless of the kind of oxygenated agent. The improvement in smoke and particulate emissions with the oxygenated agent addition was more significant for lower volatility fuels. Combustion analysis with the two-dimensional two color method showed that soot concentration in the flame during the combustion process decreased with the addition of the oxygenated agent while the flame temperature distribution was almost unchanged.