Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Refurbishment of 767 ASAT Drill-Rivet-Lockbolt Machines

2010-09-28
2010-01-1844
Boeing has relied upon the 767 ASAT (ASAT1) since 1983 to fasten the chords, stiffeners and rib posts to the web of the four 767 wing spars. The machine was originally commissioned with a Terra five axis CNC control. The Terra company went out of business and the controls were replaced with a custom DOS application in 1990. These are now hard to support so Boeing solicited proposals. Electroimpact proposed to retrofit with a Fanuc 31I CNC, and in addition, to replace all associated sensors, cables and feedback systems. This work is now complete on two of the four machines. Both left front and right front are in production with the new CNC control.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Frame-Clip Riveting End Effector

2013-09-17
2013-01-2079
A frame-clip riveting end effector has been developed for installing 3.97mm (5/32) and 4.6mm (3/16) universal head aluminum rivets. The end effector can be mounted on the end of a robot arm. The end effector provides 35.6 kNt (8000 lbs) of rivet upset. Rivets can be installed fifteen millimeters from the IML. The clearance allowed to rivet centerline is 150 millimeters. The riveting process features a unique style of rivet fingers for the universal head rivet. These fingers allow the rivet to be brought in with the ram. This differentiates from some styles of frame-clip end effectors in which the rivet is blown into the hole. The paper shows the technical components of the end effector in sequence: the pneumatic clamp, rivet insert and upset. The end effector will be used for riveting shear ties to frames on the IML of fuselage panels.
Technical Paper

Join Cell for the G150 Aircraft

2006-09-12
2006-01-3123
A simple, open, post and index system is used for final alignment and joining of the fuselage and wings of a new passenger business jet. 19 manually actuated axes precisely move the wings, forward, and rear fuselage sections into position. Movement is accomplished with industrial jacking screws and positions recorded with precision linear potentiometers. Wing sweep, angle of attack, and dihedral are monitored and controlled. The axes positions are downloaded to data files for verification and data archiving. The Gulfstream G150 Join Cell's open architecture enhances access to fasten the main aircraft structure while maintaining flight critical geometry.
Technical Paper

Dual Electric Spindle Retrofit for Wing Riveters

2006-09-12
2006-01-3176
The Boeing Company (Renton Division) had a requirement for a 30,000 RPM spindle to provide improved surface finish when milling 2034 ice box rivets in hydraulic wing riveters. Electroimpact supplied an electrical spindle which fit into the same cylinder block as the hydraulic spindle. This was reported in SAE Paper #2000-01-3017. Boeing Renton has also now put Electroimpact 20,000 RPM electric drilling spindles into five wing riveting machines so now both spindles in the machine are Electroimpact electric spindles. The electric drill spindle features an HSK 40C holder. Both spindles are powered by the same spindle drive which is alternately connected to the drill and then the shave spindle.
Technical Paper

Electric 30,000 RPM Shave Spindle for C Frame Riveter and High Performance Compact Aerospace Drill

2000-09-19
2000-01-3017
Two spindles are discussed in this paper. The first spindle was installed on nine C-frame riveters on the 737/757 wing line at the Boeing Renton facility. Due to discontinuing the use of Freon coolant and cutting fluid, the C-frame riveters had difficulty shaving 2034 ice box rivets with the existing 6000 RPM hydraulic spindles. The solution was to install electric 30,000 RPM shave spindles inside the existing 76.2 mm (3 in.) diameter hydraulic cylinder envelope. The new spindle is capable of 4 Nm (35 in. lbs.) of torque at full speed and 110 kgf (250 lbs.) of thrust. Another design of interest is the Electroimpact Model 09 spindle which is used for 20,000 RPM drilling and shaving on wing riveting systems. The Model 09 spindle is a complete servo-servo drilling system all mounted on a common baseplate. The entire spindle and feed assembly is only 6.5″ wide.
Technical Paper

Magnetic Safety Base for Automated Riveting and Bolting

2016-09-27
2016-01-2087
There is an ever-present risk for the lower ram on a riveting machine to suffer a damaging collision with aircraft parts during automated fastening processes. The risk intensifies when part frame geometry is complex and fastener locations are close to part features. The lower anvil must be led through an obstructive environment, and there is need for crash protection during side-to-side and lowering motion. An additional requirement is stripping bolt collars using the downward motion of the lower ram, which can require as much as 2500 pounds of pulling force. The retention force on the lower anvil would therefore need to be in excess of 2500 pounds. To accomplish this a CNC controlled electromagnetic interface was developed, capable of pulling with 0-3400 pounds. This electromagnetic safety base releases when impact occurs from the sides or during downward motion (5 sided crash protection), and it retains all riveting and bolting functionality.
Technical Paper

Rivet Gripper and Offset Collar Gripper for Wing Panel Riveting

1999-10-06
1999-01-3430
Robotic gripper technology has been integrated into CNC riveting machines. Handling fasteners efficiently is critical in automated wing panel riveting. Computer controlled rivet gripper and collar gripper technology has been developed that demonstrates high reliability and decreased fastener cycle times
Technical Paper

Flexible All Electric Riveter

2019-03-19
2019-01-1333
A new style of all electric riveting machine has been developed with saddle hoppers that does not require a track between the hoppers and the fingers. This enables feeding square rivets without difficulty. The upper ram has a bent knee which allows the rivet fingers to be brought up to the hopper and rotated 30 degrees rather than the rivet sliding down a track, which minimizes jamming that occurs with some fasteners in the track, and increases reliability. A mixture of fasteners can be loaded side by side in the hoppers, increasing flexibility. The rivet feeding is accomplished by bringing the rivet fingers to the hopper. The machine uses a power drawbar to change out different rivet fingers. A small industrial robot is incorporated into the machine to complete different sized coupons and also complete small assemblies. In larger machines larger robots or CNC positioners can be used to scale up the use of the machine.
Technical Paper

Riveting Thin A320 Stacks

2014-09-16
2014-01-2264
The E7000 riveting machine installs NAS1097KE5-5.5 rivets into A320 Section 18 fuselage side panels. For the thinnest stacks where the panel skin is under 2mm (2024) and the stringer is under 2mm (7075), the normal process of riveting will cause deformation of the panel or dimpling. The authors found a solution to this problem by forming the rivet with the upper pressure foot extended, and it has been tested and approved for production.
Technical Paper

Use of Synchronized Parallel Grippers in Fastener Injection Systems

2015-09-15
2015-01-2515
A new style of rivet injector is in production use on a variety of fastening machines used by major aircraft manufacturers. In this injector the opposing sides of the rivet guide blocks are attached to the arms of a parallel gripper. We have implemented the parallel gripper in both vertical axis and horizontal axis riveting applications. It is equally effective in both orientations. We have implemented the parallel gripper rivet injector on headed rivets, threaded bolts, ribbed swage bolts and unheaded (slug) rivets.
X