Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Sensitivity Analysis of Full Scale Catalyst Response under Dynamic Testing Conditions - A Method to Develop Further Understanding of Catalytic Converter Behavior Pt.1

2016-04-05
2016-01-0979
Catalyst aging is presently one of the most important aspects in aftertreatment development, with legislation stating that these systems must be able to meet the relevant emissions legislation up to a specified mileage on the vehicle, typically 150,000 miles. The current industry approach for controlling aging cycles is based solely on the detailed specification of lambda (air-fuel mixture concentration ratio), flow rate and temperature without any limitations on gas mixture. This is purely based upon the experience of engine-based aging and does not take into account any variation due to different engine operation. Although accurate for comparative testing on the same engine/engine type, inconsistencies can be observed across different aging methods, engine types and engine operators largely driven by the capability of the technology used.
Technical Paper

Limitations of Global Kinetic Parameters for Automotive Application

2012-09-10
2012-01-1638
With emission legislation becoming ever more stringent, automotive companies are forced to invest heavily into solutions to meet the targets set. To date the most effective way of treating emissions is through the use of catalytic converters. Current testing methods of catalytic converters whether being tested on a vehicle or in a lab reactor can be expensive and offer little information about what is occurring within the catalyst. It is for this reason and the increased price of precious metal that kinetic modeling has become a popular alternative to experimental testing. Many kinetic models and kinetic parameters have appeared in literature in recent years, a comparison of these kinetic parameters for the global reaction of CO oxidation is presented.
Technical Paper

A Simple But Effective Catalyst Model for Two-Stroke Engines

1992-09-01
921693
A mathematical model has been developed which predicts the tailpipe exhaust emissions of two-stroke cycle engines utilising an oxidising catalytic converter. This model is currently one-dimensional and has been developed as an aid to the design of engine/exhaust systems. The experimental rig employed has a two-fold function, its primary task was to aid in the validation of the model. Secondary to this it was used to simulate the gaseous properties of the exhaust gas at various positions in the exhaust system. The validation exercise is currently proceeding utilising metallic substrate technology with preliminary results indicating that the model is showing good correlation to measured values.
Technical Paper

The Effects of a Heated Catalyst on the Unsteady Gas Dynamic Process

1995-09-01
952141
Previously, an initial investigation examined the effect of the catalytic substrate on the gas dynamics of the blowdown pulse on the QUB single shot rig. This initial investigation measured the resulting waves from the catalytic converter in the exhaust pipe. In this early study the substrate was at ambient temperature but it is recognised that after light-off higher reaction temperatures will result from the exothermic nature of exhaust gas oxidation and reduction. Therefore substantially different results will occur. This paper details a series of experiments which investigate the influence of an operating catalyst on the unsteady gas dynamics in an exhaust system using the QUB single shot rig. In addition to measuring the effect of temperature on the gas dynamics previous work is reviewed with emphasis now on specifically measuring the features present rather than having to decipher superimposed pressure traces.
Technical Paper

Modelling of Oxidation Catalysts for Two-Stroke Cycle Engines

1996-08-01
961807
The after-treatment of exhaust gas using 3-way catalytic converters is now normal practice in automotive applications. For other applications, such as outboards, motorcycles and utility engines, new legislation is now in place in both Europe and North America. Further reduction of the permitted emission levels require the use of catalysts for two-stroke engine applications. However, current automotive catalyst systems are not suitable for durable operation in most two-stroke engines and new analytical tools are required to aid the development engineers in the implementation of revised designs and operating strategies. This paper reviews the range of modeling techniques which have been developed for automotive uses and presents new and modified models suitable for two-stroke engines. This requires particular emphasis to be placed on the oxidation reactions that predominate in the two-stroke engine exhaust.
Technical Paper

Review of Rankine Cycle Systems Components for Hybrid Engines Waste Heat Recovery

2012-09-24
2012-01-1942
In any internal combustion engine, the amount of heat rejected from the engine, and associated systems, is a result of the engine inefficiency. Successfully recovering a small proportion of this energy would therefore substantially improve the fuel economy. The Rankine Cycle system has been raising interest for its aptitude to produce systems capable of capturing part of this waste heat and regenerate it as electrical or mechanical power. By integrating these systems into existing hybrid engine environments, it has been proved that Rankine Cycle system, which is more than 150 years old, can play a major role in reducing fuel consumption. The use of such a system for waste heat recovery on a hybrid engine represents a promising compromise in transforming the thermal energy into electricity and feeding this electricity back to the vehicle drivetrain by using the in situ electrical motor system or storing it into batteries.
Technical Paper

Modelling and Control of a Hybrid Urban Bus

2019-04-02
2019-01-0354
This paper describes the development and on-vehicle validation testing of next generation parallel hybrid electric powertrain technology for use in urban buses. A forward-facing MATLAB/Simulink powertrain model was used to develop a rule-based deterministic control system for a post-transmission parallel hybrid urban bus. The control strategy targeted areas where conventional powertrains are typically less efficient, focused on improving fuel economy and emissions without boosting vehicle performance. Stored electrical energy is deployed to assist the IC engine system leading to an overall reduction in fuel consumption while maintaining vehicle performance at a level comparable with baseline conventional IC engine operation.
Technical Paper

Full Battery Pack Modelling: An Electrical Sub-Model Using an EECM for HEV Applications

2019-04-02
2019-01-1203
With a transition towards electric vehicles for the transport sector, there will be greater reliance put upon battery packs; therefore, battery pack modelling becomes crucial during the design of the vehicle. Accurate battery pack modelling allows for: the simulation of the pack and vehicle, more informed decisions made during the design process, reduced testing costs, and implementation of superior control systems. To create the battery cell model using MATLAB/Simulink, an electrical equivalent circuit model was selected due to its balance between accuracy and complexity. The model can predict the state of charge and terminal voltage from a current input. A battery string model was then developed that considered the cell-to-cell variability due to manufacturing defects. Finally, a full battery pack model was created, capable of modelling the different currents that each string experiences due to the varied internal resistance.
Technical Paper

A Study of the Effect of Light-Off Temperatures and Light-Off Curve Shape on the Cumulative Emissions Performance of 3-Way Catalytic Converters

2021-04-06
2021-01-0594
The results of this paper will show the reader how to quantify a minimum light-off temperature to meet the required emissions standards with the use of a 3-way catalytic converter. The method can be applied to both motorcycle and larger automotive catalysts to help meet their respective emissions standards (Euro 5/Euro 7). The ability to predict a light-off temperature for any catalyst at the beginning of the project saves both time and resource. With an emphasis on how the shape of the light-off curve affects the cumulative tailpipe emissions and how shape of the light-off curves change with the ageing process. Changes in the light-off curves will be reviewed to understand how the chemical reactions and pore diffusion mechanisms within the catalyst deplete to negatively affect performance over its life time.
Technical Paper

Modelling the Variation in Precious Metal Dispersion in a Three Way Catalytic Converter after Aging

2018-04-03
2018-01-0959
With emission legislations becoming ever more stringent, there is an increased pressure on after-treatment systems and more specifically three-way catalysts. With recent developments in emission legislations, there is a requirement for more complex after-treatment systems and understanding of the aging process. Whilst the body of understanding on catalyst deactivation and, in particular, catalyst aging is growing, there are still significant gaps in understanding, particularly how real world variations in temperature, flow rate and gas concentrations affect catalyst behavior. Under normal driving conditions, the catalyst can experience varying oxygen concentrations, such as under heavy acceleration or cruising down a hill will show a variation in oxygen from the engine emissions. The effect that varying oxygen concentrations has on the rate of aging is not fully understood and hence the total deactivation and conversion efficiencies are not known throughout the catalyst lifetime.
X