Refine Your Search

Affiliation

Search Results

Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

2007-01-23
2007-01-0028
In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

Studies of Fuel Properties and Oxidation Stability of Biodiesel Fuel

2007-01-23
2007-01-0073
Biodiesel fuel has attracted much attention as a carbon neutral fuel because it is made from vegetable oil. Especially in Southeast Asia, there are numerous biofuel resources, such as palm oil and coconut oil, and it is desirable to utilize these for CO2 reduction. In this paper, we evaluate the properties of biodiesel fuel and biodiesel blended diesel oil. The low temperature performance of palm oil methyl ester (PME) is poor and it affects low temperature performance, even if the PME blending rate is low. The oxidation stability is a very important property of biodiesel fuel because degraded biodiesel fuel produces organic acids and polymeric substances. PME contains mainly saturated fatty acids methyl esters, so the oxidation stability is better than other fats and oils. When containing antioxidants such as beta carotene, biodiesel's oxidation stability is improved.
Technical Paper

A Study of Fuel Auto-ignitability on Premixed Compression Ignition Characteristics

2008-04-14
2008-01-0062
It has been clarified that diesel fuel properties have a great effect on the exhaust emissions and fuel consumption of a conventional diesel combustion regime. And as other diesel combustion regimes are applied in order to improve exhaust emissions and fuel consumption, it can be supposed that the fuel properties also have significant effects. The purpose of this study is to propose the optimum diesel fuel properties for a premixed compression ignition (PCI) combustion regime. In this paper, the effect of the auto-ignitability of diesel fuels on exhaust emissions and fuel consumption was evaluated using a heavy-duty single-cylinder test engine. In all experiments, fuels were injected using an electronically controlled, common-rail diesel fuel injector, and most experiments were conducted under high EGR conditions in order to reduce NOx emissions.
Technical Paper

Investigation of the Combustion Mechanism of a Fuel Droplet Cloud by Numerical Simulation

1998-10-19
982615
The combustion mechanism of a fuel droplet cloud was studied by numerical simulation. We investigated how the flame front speed and combustion products changed depending on the equivalence ratio and initial temperature. Modeling was performed using the KIVA-III software package, a three dimensional analysis software used mainly for internal combustion engine applications. The computational domain was a horizontal 1x1x100 cell sector of a spherical combustion chamber and the fuel was n-decane. Results showed that when all the fuel droplets were assumed to have evaporated, the flame front speed increased from 28 cm/s to 152 cm/s as the equivalence ratio increased. The maximum flame front speed was reached at ϕ=1.1, beyond which it decreased (at richer overall equivalence ratios). With a constant equivalence ratio, the flame front speed decreased near the outside region, because the unburned gas was compressed by the expanding burned gas.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

Study on Improvement of Combustion and Effect of Fuel Property in Advanced Diesel Engine

2010-04-12
2010-01-1117
The tasks to improve diesel emissions and fuel consumption must be accomplished with urgency. However, due to the trade-off relationship between NOx emissions, soot emissions and fuel consumption, clean diesel combustion should be achieved by both innovative combustion and fuel technologies. The objective of this study is to extend the clean diesel combustion operating range (Engine-out emission: NOx ≺ 0.2 g/kWh, Soot ≺ 0.02 g/kWh). In this study, performance of a single-cylinder test engine equipped with a hydraulic valve actuation system and an ultra-high pressure fuel injection system was investigated. Also evaluated, were the effects of fuel properties such as auto-ignitability, volatility and aromatic hydrocarbon components, on combustion performance. The results show that applying a high EGR (Exhaust gas recirculation) rate can significantly reduce NOx emission with an increase in soot emission.
Technical Paper

Spectroscopic Analysis of Combustion in the DME Diesel Engine

2004-03-08
2004-01-0089
For better understanding of the combustion characteristics in a direct injection dimethyl ether (DME) engine, the chemiluminescences of a burner flame and in-cylinder flame were analyzed using the spectroscopic method. The emission intensities of chemiluminescences were measured by a photomultiplier after passing through a monochrome-spectrometer. For the burner flame, line spectra were found nearby the wave length of 310 nm, 430 nm and 515 nm, arising from OH, CH and C2 radicals, respectively. For the in-cylinder flame, a strong continuous spectrum was found from 340 nm wave length to 550 nm. Line spectra were also detected nearby 310 nm, 395 nm and 430 nm, arising from OH, HCHO, and C2 radicals, respectively, partially overlapping with the continuous spectrum. Of these line spectra, 310 nm of OH radical did not overlapped with the continuous spectrum.
Technical Paper

Effects of Fuel Injection Conditions on Driving Performance of a DME Diesel Vehicle

2003-10-27
2003-01-3193
Since dimethyl ether (DME) is a synthetic fuel, it is possible to make it from natural gas, coal and biomass. It is a low-emission, oxygenated fuel, which does not generate soot in the exhaust. Therefore, it has recently been identified as a possible replacement for diesel fuel. In Japan, the new short-term emissions regulations will be enforced beginning in 2003, and the long-term emissions regulations are scheduled to be enforced in 2005. In order to meet these more stringent emissions regulations, existing diesel engines would not be as widely used in the near future as they currently are. This will thus bring about a more widespread use of DME engines due to their low emissions potential. Moreover, when the modification of existing diesel engines into DME engines is available at a moderate cost, the wider use of DME engines can be expected. This study targeted development and application of DME engine technology for diesel engine retrofit, in a used diesel vehicle.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles

2002-05-06
2002-01-1648
This work aimed to develop an LPG fueled direct injection SI engine, especially in order to improve the exhaust emission quality while maintaining high thermal efficiency comparable to a conventional engine. In-cylinder direct injection engines developed recently worldwide utilizes the stratified charge formation technique at low load, whereas at high load, a close-to-homogeneous charge is formed. Thus, compared to a conventional port injection engine, a significant improvement of fuel consumption and power can be achieved. To implement such a combustion strategy, the stratification of mixture charge is very important, and an understanding of its combustion process is also inevitably necessary. In this work, a numerical simulation was performed using a CFD code (KIVA-3), where the shape of a combustion chamber, swirl intensity, injection timing and duration, etc. were varied and their effects on the mixture formation and combustion process were investigated.
Technical Paper

The Possibility of Gas to Liquid (GTL) as a Fuel of Direct Injection Diesel Engine

2002-05-06
2002-01-1706
In this study, engine performances and exhaust emissions characteristics of compression ignition engine fueled with GTL were investigated by comparison with diesel fuel. Diesel engine could be operated fueled with GTL without any special modify for the test engine. With the high cetane number of GTL, the ignition lag was shorter, and the combustion started earlier than that of diesel fuel. Brake thermal efficiency operated with GTL increased at middle load conditions due to incomplete combustion emission such as CO and THC were lower than that of diesel fuel operation. NOx emission with GTL was comparable to diesel fuel, and there was a little decrease at high load. With GTL, soot emission was lower than with diesel fuel at above middle load condition. It seemed to be a reason of soot reduction that there was little sulphur contained in GTL.
Technical Paper

Spectroscopic Investigation of the Combustion Process in DME Compression Ignition Engine

2002-05-06
2002-01-1707
For better understanding of the in-cylinder combustion characteristics of DME, combustion radicals of a direct injection DME-Fueled compression ignition engine were observed using a spectroscopic method. In this initial report, the emission intensity of OH, CH, CHO, C2 and NO radicals was measured using a photomultiplier. These radicals could be measured with wavelength resolution (half-width) as about 3.3 nm. OH and CHO radicals appeared first, and then CH radical emission was detected. After that, the combustion radicals were observed using a high-speed image intensified video camera with band-pass filter. All of radicals were able to observe as images with half-width as 6 or about 10 nm. Rich DME leaked from nozzle was burning at the end of combustion. Therefore, the second light emission of C2 radical after the main combustion was observed.
Technical Paper

Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME)

2002-05-06
2002-01-1711
Recently, dimethyl ether (DME) has been attracting much attention as a clean alternative fuel, since the thermal efficiency of DME powered diesel engine is comparable to diesel fuel operation and soot free combustion can be achieved. In this experiment, the effect of ambient pressure on DME spray was investigated with observation of droplet size such as Sauter mean diameter (SMD) by the shadowgraph and image processing method. The higher ambient pressure obstructs the growth of DME spray, therefore faster breakup was occurred, and liquid column was thicker with increasing the ambient pressure. Then engine performances and exhaust emissions characteristics of DME diesel engine were investigated with various compression ratios. The minimum compression ratio for the easy start and stable operation was obtained at compression ratio of about 12.
Technical Paper

Investigation of the Combustion Process of a DI CI Engine Fueled with Dimethyl Ether

2001-09-24
2001-01-3504
Dimethyl Ether (DME) is one of the major candidates for the next generation fuel for compression ignition (CI) engines. It has good self-ignitability and would not produce particulate, even at rich conditions. DME has proved to be able to apply to ordinary diesel engines with minimal modifications, but its combustion characteristics are not completely understood. In this study, the behavior of a DME spray and combustion process of a direct injection CI engine fueled with DME was investigated by combustion observation and in-cylinder gas sampling. To distinguish evaporated and non-evaporated zones of a spray, direct and schlieren imaging were carried out. The sampled gas from a DME spray was analyzed by gas chromatography, and the major intermediate product histories during ignition period were analyzed.
Technical Paper

Spray Characteristics of DME Blended Biodiesel Oil

2001-09-24
2001-01-3636
Spray characteristics of biodiesel oil was investigated as it can be applied to industrial combustion systems, including internal combustion engines. Shadowgraph methodology using Greenfield system was used to take some images of the spray and to measure droplet size. A high speed video camera was also used to take a picture of spray penetration and its angle. From the results, it shows that DME blended biodiesel oil has almost the same droplet size as conventional diesel oil, when the blended DME ratio is over 50% by weight. It is also shown that there exists optimum fuel injection pressure that has minimum droplet size when the ambient gas pressure is constant.
Technical Paper

Spray Characteristics of LPG Direct Injection Diesel Engine

2003-03-03
2003-01-0764
In this study, spray images of LPG Blended Fuels (LBF) for DI diesel engines were observed using a constant volume chamber at high ambient temperature and pressure, and the spray characteristics of the fuel were investigated. The LBF spray started to vaporize at the injector tip and the outer downstream regions of the spray, like diesel fuel, because of the high temperature at these areas. There were more vaporized areas compared to diesel fuel. Sufficient fuel injection volume and volatility of LBF resulted in good fuel-air mixture, then, THC emissions decreased compared to diesel fuel at high load engine test conditions. Butane spray image could not be observed at the injector tip. It seems that the high temperature of the injector tip caused the butane spray to vaporize rapidly. Spray tip penetration with LBF and butane were equal or greater than with diesel fuel. The high volatility of LBF and butane had no noticeable effect on spray penetration.
Technical Paper

Experimental Study of Direct Injection Diesel Engine Fueled with Two Types of Gas To Liquid (GTL)

2002-10-21
2002-01-2691
In this study, the main properties of two types of gas-to-liquid (GTL) fuels were investigated. Then, performance and emission characteristics of a compression ignition engine fueled with GTLs were investigated by comparison with diesel fuel. GTL1 was composed of 100% paraffin by volume, and GTL2 was composed of 99.8% paraffin and 0.2% aromatics by volume. Most GTL fuel properties were comparable to those of diesel fuel, while both fuels have a higher cetane number and lower sulphur. A diesel engine could be operated with GTL fueling without any special engine modifications. Our tests showed that with the high cetane number of GTLs, the ignition delay was shorter, and combustion started earlier than with diesel fuel. With GTL1 operation, THC and soot emissions were lower than with diesel fuel operation, and even lower with GTL2 fueling.
Technical Paper

Combustion Radicals Observation of DME Engine by Spectroscopic Method

2002-03-04
2002-01-0863
For better understanding of the in-cylinder combustion characteristics of DME, combustion radicals of a direct injection DME-Fueled compression ignition engine were observed using a spectroscopic method. In this initial report, the emission intensity of OH, CH, CHO, C2 and NO radicals was measured using a photomultiplier. These radicals could be measured with wavelength resolution (half-width) of about 3.3 nm. OH and CHO radicals appeared first, and then CH radical emission was detected. After that, the combustion radicals were observed using a high-speed image intensified video camera. C2 and CH radicals were able to observe roughly as images. However, the emission intensity of DME combustion was not strong enough to take OH, CHO and NO radical images. CH radical combustion occurred near the chamber wall and burned like a ring, as combustion progress, indicating active heat release occurred near the chamber wall.
Technical Paper

Spray and Exhaust Emission Characteristics of a Biodiesel Engine Operating with the Blend of Plant Oil and DME

2002-03-04
2002-01-0864
As an effective method to solve the global warming and the energy crisis, the research has been carried out for the adaptability of plant oil as an alternative fuel for Diesel engine. But there are the problems of engine performance and exhaust emissions owing to the high viscosity and low volatility, when the plant oil is used as a fuel. In order to eliminate these problems, spray characteristics of the DME (Dimethyl ether) blended plant oil has been examined by using the image processing based on the shadowgraph methodology. Results show that the optimum mixing ratio of the blend is about 50:50 (by weight %). Thereafter, experiments have been conducted with a DI Diesel engine using the DME blended plant oil, and compared the exhaust emissions with Diesel, DME and transesterified fuel operation. From the results, it can be concluded that the combustion characteristics of DME blended plant oil are comparable to Diesel fuel.
Technical Paper

Development of Retrofit DME Diesel Engine Operating with Rotary Distributor Fuel Injection Pump

2003-03-03
2003-01-0758
In order to reduce environmental disruption due to exhaust PM and NOx emissions from diesel engines of dimethyl ether (DME) has been proposed the use for the next generation vehicles, because the discharge of the atmospheric pollutants is less. In this study, DME is used to fuel a retrofit type diesel engine, and operational tests were carried out using a rotary distributor fuel injection pump. In this experiment, comparison and examination of the effects of fuel injection pressure, nozzle hole diameter, and injection timing. When using DME as an alternative fuel, the fuel temperature affects engine operation. And diameter of the injector nozzle hole and larger injection quantity is regarded as factors affecting the improvement in engine performance. In addition, for understanding the DME spray in the cylinder, DME was sprayed in a constant volume chamber where atmospheric temperature and pressure increased simultaneously, and the result is compared and examined with diesel fuel.
X