Refine Your Search

Search Results

Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

2007-01-23
2007-01-0028
In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

Studies of Fuel Properties and Oxidation Stability of Biodiesel Fuel

2007-01-23
2007-01-0073
Biodiesel fuel has attracted much attention as a carbon neutral fuel because it is made from vegetable oil. Especially in Southeast Asia, there are numerous biofuel resources, such as palm oil and coconut oil, and it is desirable to utilize these for CO2 reduction. In this paper, we evaluate the properties of biodiesel fuel and biodiesel blended diesel oil. The low temperature performance of palm oil methyl ester (PME) is poor and it affects low temperature performance, even if the PME blending rate is low. The oxidation stability is a very important property of biodiesel fuel because degraded biodiesel fuel produces organic acids and polymeric substances. PME contains mainly saturated fatty acids methyl esters, so the oxidation stability is better than other fats and oils. When containing antioxidants such as beta carotene, biodiesel's oxidation stability is improved.
Technical Paper

Flame Front Speed of a Decane Cloud under Microgravity Conditions

1998-10-19
982566
In this study, a piezo disk was used to generate a cloud of n-decane fuel drops, which were mixed with air, then carried into a combustion chamber and ignited by a platinum wire. Microgravity data obtained at the Japan Microgravity Center (JAMIC) were compared to normal gravity data, all at 1Atm pressure and 20+/-1°C initial temperature. Under normal gravity the lean limit was found to be 7.6x106/mm3 (Φ = 1.0), and from this point the flame front speed steadily increased from 20cm/s up to a maximum flame front speed of 210cm/s at a fuel drop density of about 14x106/mm3 (Φ = 1.85). Microgravity data showed a much richer lean limit - about 14.5x106/mm3 (Φ = 1.9), and the flame front speed did not gradually rise to a peak value. Instead, the measurements indicated a peak value of about 250cm/s, with a steep increase followed by a gradual decrease at richer fuel air ratios. A cellular flame structure appeared, and the cell size decreased as the mixture density increased.
Technical Paper

Flame Speed Measurements and Predictions of Propane, Butane and Autogas at High Pressures

1998-10-19
982448
Flame propagation at elevated pressures for propane, butane and autogas (20% propane and 80% butane by mass) were investigated. Flame arrival time was measured using ionization probes installed along the wall of a cylindrical combustion chamber. Flame radius was also measured using a laser schlieren technique. Results showed that the flame front speed decreased with increasing initial pressure, and the initial pressure effect on maximum flame front speed was correlated by the relationship Sf = 175·pi-0.15 (for Φ=1.0). Characteristics of flame front speed between propane, butane and autogas were very similar, whereas at fuel-rich conditions flame front speed of butane and autogas were higher than that of propane. A thermodynamic model to predict flame radius and speed as a function of time was derived and tested using measured pressure-time curves.
Technical Paper

Investigation of the Combustion Mechanism of a Fuel Droplet Cloud by Numerical Simulation

1998-10-19
982615
The combustion mechanism of a fuel droplet cloud was studied by numerical simulation. We investigated how the flame front speed and combustion products changed depending on the equivalence ratio and initial temperature. Modeling was performed using the KIVA-III software package, a three dimensional analysis software used mainly for internal combustion engine applications. The computational domain was a horizontal 1x1x100 cell sector of a spherical combustion chamber and the fuel was n-decane. Results showed that when all the fuel droplets were assumed to have evaporated, the flame front speed increased from 28 cm/s to 152 cm/s as the equivalence ratio increased. The maximum flame front speed was reached at ϕ=1.1, beyond which it decreased (at richer overall equivalence ratios). With a constant equivalence ratio, the flame front speed decreased near the outside region, because the unburned gas was compressed by the expanding burned gas.
Technical Paper

Combustion and Emission Characteristics of a PCI Engine Fueled with Ethanol-Diesel Blends

2009-06-15
2009-01-1854
This study investigates the mechanisms of solubility, ignition, combustion and emission of ethanol diesel blend fuel for the prospect of using ethanol diesel blend in a Premixed Compression Ignition (PCI) engine. Ethanol diesel blend fuel of ethanol blend ratio 20vol% (E20) does not solubilize in atmospheric temperature, though will solubilize when heated to 323K. When applying ethanol diesel blend fuel to a PCI engine, combustion characteristics changes, which increases ignition delay and decreases the rate-of-pressure-rise. We speculated that the above combustion characteristics were shown as a result of the following three reasons: a leaner mixture caused by increase in ignition delay, fuel adhesion to cavity wall by ethanol and diesel fuels evaporation characteristics, and a decrease in combustion rate by adding ethanol.
Technical Paper

HC and CO Formation Factors in a PCI Engine

2009-06-15
2009-01-1889
Since the mixture become relative lean and homogeneous when ignition occurs in PCI engines, NOx and PM can be reduced simultaneously. However, HC and CO emissions in PCI engines are higher by one order than conventional direct injection diesel engines. The influence factors of HC and CO emissions for conventional direct-injection diesel engines have been analyzed by a lot of studies. In spite of the mechanism of HC formation in PCI would different to conventional direct-injection diesel because of injection timing in PCI engine is considerably earlier than that of a conventional diesel engine, there are not many works on HC and CO emissions of PCI engine. In this study, the characteristics of HC and CO emissions in a PCI engine were investigated by changing combustion chamber geometry (cavity diameter), topland volume, and injection timing. At the same time, the simulations of spray and air-fuel mixture formation were conducted by using GTT code.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

Study on Improvement of Combustion and Effect of Fuel Property in Advanced Diesel Engine

2010-04-12
2010-01-1117
The tasks to improve diesel emissions and fuel consumption must be accomplished with urgency. However, due to the trade-off relationship between NOx emissions, soot emissions and fuel consumption, clean diesel combustion should be achieved by both innovative combustion and fuel technologies. The objective of this study is to extend the clean diesel combustion operating range (Engine-out emission: NOx ≺ 0.2 g/kWh, Soot ≺ 0.02 g/kWh). In this study, performance of a single-cylinder test engine equipped with a hydraulic valve actuation system and an ultra-high pressure fuel injection system was investigated. Also evaluated, were the effects of fuel properties such as auto-ignitability, volatility and aromatic hydrocarbon components, on combustion performance. The results show that applying a high EGR (Exhaust gas recirculation) rate can significantly reduce NOx emission with an increase in soot emission.
Technical Paper

Effects of Fuel Injection Conditions on Driving Performance of a DME Diesel Vehicle

2003-10-27
2003-01-3193
Since dimethyl ether (DME) is a synthetic fuel, it is possible to make it from natural gas, coal and biomass. It is a low-emission, oxygenated fuel, which does not generate soot in the exhaust. Therefore, it has recently been identified as a possible replacement for diesel fuel. In Japan, the new short-term emissions regulations will be enforced beginning in 2003, and the long-term emissions regulations are scheduled to be enforced in 2005. In order to meet these more stringent emissions regulations, existing diesel engines would not be as widely used in the near future as they currently are. This will thus bring about a more widespread use of DME engines due to their low emissions potential. Moreover, when the modification of existing diesel engines into DME engines is available at a moderate cost, the wider use of DME engines can be expected. This study targeted development and application of DME engine technology for diesel engine retrofit, in a used diesel vehicle.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles

2002-05-06
2002-01-1648
This work aimed to develop an LPG fueled direct injection SI engine, especially in order to improve the exhaust emission quality while maintaining high thermal efficiency comparable to a conventional engine. In-cylinder direct injection engines developed recently worldwide utilizes the stratified charge formation technique at low load, whereas at high load, a close-to-homogeneous charge is formed. Thus, compared to a conventional port injection engine, a significant improvement of fuel consumption and power can be achieved. To implement such a combustion strategy, the stratification of mixture charge is very important, and an understanding of its combustion process is also inevitably necessary. In this work, a numerical simulation was performed using a CFD code (KIVA-3), where the shape of a combustion chamber, swirl intensity, injection timing and duration, etc. were varied and their effects on the mixture formation and combustion process were investigated.
Technical Paper

Spectroscopic Investigation of the Combustion Process in DME Compression Ignition Engine

2002-05-06
2002-01-1707
For better understanding of the in-cylinder combustion characteristics of DME, combustion radicals of a direct injection DME-Fueled compression ignition engine were observed using a spectroscopic method. In this initial report, the emission intensity of OH, CH, CHO, C2 and NO radicals was measured using a photomultiplier. These radicals could be measured with wavelength resolution (half-width) as about 3.3 nm. OH and CHO radicals appeared first, and then CH radical emission was detected. After that, the combustion radicals were observed using a high-speed image intensified video camera with band-pass filter. All of radicals were able to observe as images with half-width as 6 or about 10 nm. Rich DME leaked from nozzle was burning at the end of combustion. Therefore, the second light emission of C2 radical after the main combustion was observed.
Technical Paper

Spray Characteristics of DME Blended Biodiesel Oil

2001-09-24
2001-01-3636
Spray characteristics of biodiesel oil was investigated as it can be applied to industrial combustion systems, including internal combustion engines. Shadowgraph methodology using Greenfield system was used to take some images of the spray and to measure droplet size. A high speed video camera was also used to take a picture of spray penetration and its angle. From the results, it shows that DME blended biodiesel oil has almost the same droplet size as conventional diesel oil, when the blended DME ratio is over 50% by weight. It is also shown that there exists optimum fuel injection pressure that has minimum droplet size when the ambient gas pressure is constant.
Technical Paper

Spray Characteristics of LPG Direct Injection Diesel Engine

2003-03-03
2003-01-0764
In this study, spray images of LPG Blended Fuels (LBF) for DI diesel engines were observed using a constant volume chamber at high ambient temperature and pressure, and the spray characteristics of the fuel were investigated. The LBF spray started to vaporize at the injector tip and the outer downstream regions of the spray, like diesel fuel, because of the high temperature at these areas. There were more vaporized areas compared to diesel fuel. Sufficient fuel injection volume and volatility of LBF resulted in good fuel-air mixture, then, THC emissions decreased compared to diesel fuel at high load engine test conditions. Butane spray image could not be observed at the injector tip. It seems that the high temperature of the injector tip caused the butane spray to vaporize rapidly. Spray tip penetration with LBF and butane were equal or greater than with diesel fuel. The high volatility of LBF and butane had no noticeable effect on spray penetration.
Technical Paper

Spray and Exhaust Emission Characteristics of a Biodiesel Engine Operating with the Blend of Plant Oil and DME

2002-03-04
2002-01-0864
As an effective method to solve the global warming and the energy crisis, the research has been carried out for the adaptability of plant oil as an alternative fuel for Diesel engine. But there are the problems of engine performance and exhaust emissions owing to the high viscosity and low volatility, when the plant oil is used as a fuel. In order to eliminate these problems, spray characteristics of the DME (Dimethyl ether) blended plant oil has been examined by using the image processing based on the shadowgraph methodology. Results show that the optimum mixing ratio of the blend is about 50:50 (by weight %). Thereafter, experiments have been conducted with a DI Diesel engine using the DME blended plant oil, and compared the exhaust emissions with Diesel, DME and transesterified fuel operation. From the results, it can be concluded that the combustion characteristics of DME blended plant oil are comparable to Diesel fuel.
Technical Paper

Development of Retrofit DME Diesel Engine Operating with Rotary Distributor Fuel Injection Pump

2003-03-03
2003-01-0758
In order to reduce environmental disruption due to exhaust PM and NOx emissions from diesel engines of dimethyl ether (DME) has been proposed the use for the next generation vehicles, because the discharge of the atmospheric pollutants is less. In this study, DME is used to fuel a retrofit type diesel engine, and operational tests were carried out using a rotary distributor fuel injection pump. In this experiment, comparison and examination of the effects of fuel injection pressure, nozzle hole diameter, and injection timing. When using DME as an alternative fuel, the fuel temperature affects engine operation. And diameter of the injector nozzle hole and larger injection quantity is regarded as factors affecting the improvement in engine performance. In addition, for understanding the DME spray in the cylinder, DME was sprayed in a constant volume chamber where atmospheric temperature and pressure increased simultaneously, and the result is compared and examined with diesel fuel.
Technical Paper

Dual-Fuel Diesel Engine Using Butane

1992-02-01
920690
The authors tried to use LP gas, mainly butane, as the main fuel of diesel engines to reduce soot and to maintain high thermal efficiency. LP gas was injected in the direction of the intake valve directly as a spray to prevent knocking and to preserve high charging efficiency. The newly developed electronic fuel injection provided accurate fuel control and injection timing. As a result, the dual-fuel operation produced high thermal efficiency almost identical to that of diesel engines. Soot in engine exhaust was almost negligible. Three quarters of maximum output was obtained with butane, and only small amount of gas oil for idling, in spite of an high compression ratio of 17 for gas engines. Increasing the proportion of gas oil resulted in maximum output from a diesel engine and almost no soot output.
Technical Paper

Japanese Standards for Diesel Fuel Containing 5% FAME: Investigation of Acid Generation in FAME Blended Diesel Fuels and Its Impact on Corrosion

2006-10-16
2006-01-3303
The Agency of Natural Resources and Energy, Ministry of Economy, Trade and Industry has conducted conformity tests of diesel fuel containing Fatty Acid Methyl Ester (FAME) to amend diesel fuel standards in Japan. The objective of the tests is to examine appropriate specifications of diesel fuel containing FAME for automotive use for existing vehicles in the Japanese market. The conformity testing includes verification of fuel system component compatibility, tail pipe emissions, and characterization of the reliability and durability of the engine system, including the fuel injection system. In designing the conformity tests, the maximum FAME concentration was 5%. Most of the new standards are essentially equivalent to EN14214, but the total acid number (TAN) of specific acids, and oxidation stability of the new standards for diesel fuel containing FAME, are different from EN14214.
Technical Paper

Influence of Fuel Injector Nozzle Geometry on Internal and External Flow Characteristics

1997-02-24
970354
The effects of upstream conditions, such as nozzle and entrance shapes, on external flow characteristics continue to challenge fuel injection modeling efforts, particularly in the case of high-pressure diesel sprays. In this research, flow details were investigated both experimentally and numerically in a fuel injector nozzle orifice using an integrated approach. Calculations using the SIMPLE algorithm were first performed for the scaled-up experimental nozzles with various length to diameter ratios (L/d). Measurements of internal flow velocities for these nozzles were made by laser Doppler velocimetry in order to verify the computational results. Mean and fluctuating velocities and discharge coefficients were obtained at various Reynolds numbers. The mean turbulence intensity and turbulent kinetic energy for a sharp inlet nozzle were generally higher than for a round inlet nozzle, except for the near-wall region beginning at about one nozzle diameter from the entrance.
X