Refine Your Search




Search Results

Technical Paper

Analysis of Cyclic Fluctuations of Charge Motion and Mixture Formation in a DISI Engine in Stratified Operation

Engine processes are subject to cyclic fluctuations, which a have direct effect on the operating and emission behavior of the engine. The fluctuations in direct injection gasoline engines are induced and superimposed by the flow and the injection. In stratified operation they can cause serious operating problems, such as misfiring. The current state of knowledge on the formation and causes of cyclic fluctuations is rather limited, which can be attributed to the complex nature of flow instabilities. The current investigation analyzes the cyclic fluctuations of the in-cylinder charge motion and the mixture formation in a direct injection gasoline engine using laser-optical diagnostics and numerical 3D-calculation. Optical measurement techniques and pressure indication are used to measure flow, mixture formation, and combustion processes of the individual cycles.
Technical Paper

Balancing of Engine Oil Components in a DI Diesel Engine with Exhaust Gas Aftertreatment

The influence of oil related emissions became more important in the past due to reduced engine-out emissions of combustion engines. Additionally the efficiency of exhaust gas after treatment components is influenced by oil derived components. A balancing of relevant engine oil components (Ca, Mg, Zn, P, S, Mo, B, Fe, Al, Cu) is presented in this paper. The oil components deposited in the combustion chamber, in the exhaust system as well as in the aftertreatment devices were determined and quantified. Therefore a completely cleaned DI Diesel engine with oxidation catalyst, Diesel particulate filter (DPF) and NOx adsorber catalyst (LNT) was operated in different operating conditions for 500 h in a development test cell. The operation included lean/rich cycling for NOx trap regeneration. After finishing the 500 h test procedure the engine was completely disassembled and all deposits were analyzed.
Technical Paper

Variable compression in SI engines

Downsizing is an effective way to further improve the efficiency of SI engines. To make most of this concept, the compression ratio has to be adjusted during engine operation. Thus, the efficiency disadvantages during part load can be eliminated. A fuel consumption reduction of up to 30% can be realized compared to naturally aspirated engines of the same power. After the assessment of several known concepts it turned out that the eccentric crankshaft positioning represents an appropriate solution which meets the requirements of good adjustability, unaltered inertia forces, low power demand of the positioning device and reasonable design effort. The basic challenges posed by the eccentric crankshaft positioning have been tackled, namely the crankshaft bearing and the integration of the newly developed power take-offs which have almost no influence on the base design.
Technical Paper

Development of Fuel Cell System Air Management Utilizing HIL Tools

In this paper, boosting strategies are investigated for part load operation of typical fuel-cell-systems. The optimal strategy can mainly be obtained by simulation. The boosting strategy is one of the most essential parameters for design and operation of a fuel-cell-system. High pressure ratios enable high power densities, low size and weight. Simultaneously, the demands in humidification and water recovery for today's systems are reduced. But power consumption and design effort of the system increases strongly with the pressure level. Therefore, the main focus must be on the system efficiencies at part load. In addition, certain boundary conditions like the inlet temperature of the fuel-cell stack must be maintained. With high pressure levels the humidification of the intake air before, within or after the compressor is not sufficient to dissipate enough heat. Vaporization during the compression process shows efficiency advantages while the needs in heat dissipation decreases.
Technical Paper

Combined Particulate Matter and NOx Aftertreatment Systems for Stringent Emission Standards

The HSDI Diesel engine contributes substantially to the decrease of fleet fuel consumption thus to the reduction of CO2 emissions. This results in the rising market acceptance which is supported by desirable driving performance as well as greatly improved NVH behavior. In addition to the above mentioned requirements on driving performance, fuel economy and NVH behavior, continuously increasing demands on emissions performance have to be met. From today's view the Diesel particulate trap presents a safe technology to achieve the required reduction of the particle emission of more than 95%. However, according to today's knowledge a further, substantial NOx engine-out emission reduction for the Diesel engine is counteracts with the other goal of reduced fuel consumption. To comply with current and future emission standards, Diesel engines will require DeNOx technologies.
Technical Paper

New CNG Concepts for Passenger Cars: High Torque Engines with Superior Fuel Consumption

Since the CO2 emissions of passenger car traffic and their greenhouse potential are in the public interest, natural gas (CNG) is discussed as an attractive alternative fuel. The engine concepts that have been applied to date are mainly based upon common gasoline engine technology. In addition, in mono-fuel applications, it is made use of an increased compression ratio -thanks to the RON (Research Octane Number) potential of CNG-, which allows for thermodynamic benefits. This paper presents advanced engine concepts that make further use of the potentials linked to CNG. Above all, the improved knock tolerance, which can be particularly utilized in turbocharged engine concepts. For bi-fuel (CNG/gasoline) power trains, the realization of variable compression ratio is of special interest. Moreover, lean burn technology is a perfect match for CNG engines. Fuel economy and emission level are evaluated basing on test bench and vehicle investigations.
Technical Paper

System Comparison of Hybrid and Fuel Cell Systems to Internal Combustion Engines

Increasing shortages of energy resources as well as emission legislation development is increasing the pressure to develop more efficient, environmentally friendly propulsion systems for vehicles. Alternatives such as fuel cell systems or hybrid propulsion are in discussion or have already been introduced. This paper gives a survey on the present technical status of internal combustion engines, hybrid concepts and current fuel cell vehicles. Different solutions will be presented, so that an evaluation of advantages and drawbacks can be given. The further potentials of each concept, as well as combinations of different systems are discussed, and an outlook into the future is given.
Technical Paper

Integrated Air Supply and Humidification Concepts for Fuel Cell Systems

In this paper different air management system concepts including mechanical superchargers and turbochargers are analysed with regard to their suitability for fuel cell applications. Therefore a simulation model which takes the main mass, energy and heat flows in the fuel cell system including fuel evaporation, reformer, gas cleaning, humidification, burner and compressor/expander unit into account was setup. For a PEM system with methanol steam reformer the best system efficiencies at rated power can be achieved with a turbocharger in combination with a tailgas burner for operating pressures between 2.5 and 2.8 bar. For pure hydrogen systems the best system efficiency is obtained with an electric driven supercharger for a maximum pressure of 2 bar and an appropriate pressure strategy during part load operation in the complete operating range. The increase of system efficiency for pressurized stack operation is mainly attributed to advantages with regard to water management.
Technical Paper

Future of Combustion Engines

Increasing shortages of energy resources as well as emission legislation is increasing the pressure to develop more efficient, environmentally friendly propulsion systems for vehicles. Due to its more than 125 years of history with permanent improvements, the internal combustion engine (ICE) has reached a very high development status in terms of efficiency and emissions, but also drivability, handling and comfort. Therefore, the IC engine will be the dominant propulsion system for future generations. This paper gives a survey on the present technical status and future prospects of internal combustion engines, both CI and SI engines, also including alternative fuels. In addition a brief overview of the potential of currently intensely discussed hybrid concepts is given.
Technical Paper

Applying Representative Interactive Flamelets (RIF) with Special Emphasis on Pollutant Formation to Simulate a DI Diesel Engine with Roof-Shaped Combustion Chamber and Tumble Charge Motion

Combustion and pollutant formation in a new recently introduced Common-Rail DI Diesel engine concept with roof-shaped combustion chamber and tumble charge motion are numerically investigated using the Representative Interactive Flamelet concept (RIF). A reference case with a cup shaped piston bowl for full load operating conditions is considered in detail. In addition to the reference case, three more cases are investigated with a variation of start of injection (SOI). A surrogate fuel consisting of n-decane (70% liquid volume fraction) and α-methylnaphthalene (30% liquid volume fraction) is used in the simulation. The underlying complete reaction mechanism comprises 506 elementary reactions and 118 chemical species. Special emphasis is put on pollutant formation, in particular on the formation of NOx, where a new technique based on a three-dimensional transport equation within the flamelet framework is applied.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

Diesel Combustion Control with Closed-Loop Control of the Injection Strategy

Current and future emission legislations require a significant reduction of engine-out emissions for Diesel engines. For a further reduction of engine-out emissions, different measures are necessary such as: Especially an advanced emission and closed-loop combustion control has gained increased significance during the past years.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Technical Paper

Prediction of Combustion Delay and -Duration of Homogeneous Charge Gasoline Engines based on In-Cylinder Flow Simulation

In this paper a new approach is presented to evaluate the combustion behaviour of homogeneous gasoline engines by predicting burn delay and -duration in a way which can be obtained under the time constraints of the development process. This is accomplished by means of pure in-cylinder flow simulations without a classical combustion model. The burn delay model is based on the local distribution of the turbulent flow near the spark plug. It features also a methodology to compare different designs regarding combustion stability. The correlation for burn duration uses a turbulent characteristic number that is obtained from the turbulent flow in the combustion chamber together with a model for the turbulent burning velocity. The results show good agreement with the combustion process of the analyzed engines.
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

Investigation of Spray-Bowl Interaction Using Two-Part Analysis in a Direct-Injection Diesel Engine

The purpose of this study is to investigate the effect of spray-bowl interaction on combustion, and pollutants formation at one specific high-load point of a single-cylinder small-bore diesel engine through computational analysis. The simulations are performed using Representative Interactive Flamelet (RIF) model with detailed chemical kinetics. Detailed chemistry-based soot model is used for the prediction of soot emissions. The simulations are performed for five different injection timings. Model-predicted cylinder pressure and exhaust emissions are validated against the measured data for all the injection timings. A new method - Two-part analysis - is then applied to investigate the spray-bowl interaction. Two-part analysis splits the volume of the combustion chamber into two, namely the piston bowl and the squish volume. Through analysis, among others the histories of soot, carbon monoxide (CO) and nitric oxide (NO ) emissions inside both volumes are shown.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Technical Paper

Impact of Fuel Properties on the Performance of a Direct Injection Diesel Engine under Part Homogeneous Operating Conditions

Tightening of emission norms necessitate intensified research in the field of emissions reduction. Fuel research opens up a vast area of potential improvement, since combustion behavior and the nature of the combustion products can be heavily influenced by fuel composition. In this paper, the effects of fuel properties on combustion and emissions shall be discussed, based on the study of standard diesel fuel, two types of diesel-like fuels and a kerosene fuel. Investigations were conducted on a single cylinder heavy duty direct-injected diesel engine operating under part-homogeneous combustion in the part-load operating range. For this purpose, a statistical design of experiments method (DOE) was utilized in order to evaluate the influence of each fuel property and, thus, develop a model for all selected fuels. Variation in EGR rates, injection and air patterns have significant effects on the combustion in the fuels under investigation.
Technical Paper

Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine

The application of technologies such as direct injection, turbo charging and variable valve timing has caused a significant evolution of the gasoline engine with positive effects on fuel consumption and emissions. The current developments are primarily focused on the realization of improved full load characteristics and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbo charging and high specific power. The requirements of high specific power in a relatively small cylinder displacement and a wide range of DI injection specifications lead to competing development targets and to a high number of degrees of freedom during engine layout and optimization. One of the major targets is to assess the stability of the combustion system in the early development phase.
Technical Paper

Functional Safety for Hybrid and Electric Vehicles

Hybrid and electric vehicles present a promising trade-off between the necessary reductions in emissions and fuel consumption, the improvement in driving pleasure and performance of today's and tomorrow's vehicles. These hybrid vehicles rely primarily on electronics for the control and the coordination of the different sub-systems or components. The number and complexity of the functions distributed over many control units is increasing in these vehicles. Functional safety, defined as absence of unacceptable risk due to the hazards caused by mal-function in the electric or electronic systems is becoming a key factor in the development of modern vehicles such as electric and hybrid vehicles. This important increase in functional safety-related issues has raised the need for the automotive industry to develop its own functional safety standard, ISO 26262.