Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Optical and Thermodynamic Investigations of Reference Fuels for Future Combustion Systems

2010-10-25
2010-01-2193
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. An investigation program is carried out to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. In this paper, fundamental results of the Diesel engine relevant combustion are presented. To enable optimum engine performance a range of different reference fuels have been investigated. The fundamental effects of different physical and chemical properties on emission formation and engine performance are investigated using a thermodynamic diesel single cylinder research engine and an optically-accessible combustion vessel. Depending on the chain length and molecular structure, fuel compounds vary in cetane number, boiling temperature etc. Therefore, different hydrocarbons including n-heptane, n-dodecane, and l-decanol were investigated.
Journal Article

Potential of Cellulose-Derived Biofuels for Soot Free Diesel Combustion

2010-04-12
2010-01-0335
Today's biofuels require large amounts of energy in the production process for the conversion from biomass into fuels with conventional properties. To reduce the amounts of energy needed, future fuels derived from biomass will have a molecular structure which is more similar to the respective feedstock. Butyl levulinate can be gained easily from levulinic acid which is produced by acid hydrolysis of cellulose. Thus, the Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of this biofuel compound, as a candidate for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. Previous investigations identified most desirable fuel properties like a reduced cetane number, an increased amount of oxygen content and a low boiling temperature for compression ignition engine conditions.
Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Journal Article

Effects of Mixture Stratification on Ignition and Combustion in a GCAI Engine

2014-04-01
2014-01-1270
Fuel consumption and NOx emissions of gasoline engines at part load can be significantly reduced by Controlled Auto-Ignition combustion concepts. However, the range of Gasoline Controlled Auto-Ignition (GCAI) operation is still limited by lacking combustion stability at low load and by high pressure-rise rates toward higher loads. Previous investigations indicate that the auto-ignition process is particularly determined by the thermodynamic state of the charge and by stratification effects of residual gas, temperature, and air-fuel ratio. However, little experimental data exist on the direct influence of mixture stratification on local ignition and heat-release rate (HRR) in direct-injection (DI) GCAI engines, because it is challenging to measure all the relevant charge and combustion parameters quasi-simultaneously with sufficient spatial/temporal resolution and precision.
Journal Article

Probing Species Formed by Pilot Injection During Re-Compression in a Controlled Auto-Ignition Engine by H2CO LIF and Chemiluminescence Imaging

2014-04-01
2014-01-1275
Pilot injection (PI) during the negative-valve-overlap (NVO) period is one method to improve control of combustion in gasoline controlled auto-ignition engines. This is generally attributed to both chemical and thermal effects. However, there are little experimental data on active species formed by the combusting PI and their effect on main combustion in real engines. Thus, it is the objective of the current study to apply and assess optical in-cylinder diagnostics for these species. Firstly, the occurrence and nature of combustion during the NVO period is investigated by spectrally-resolved multi-species flame luminescence measurements. OH*, CH*, HCO*, CO-continuum chemiluminescence, and soot luminosity are recorded. Secondly, spectrally-, spatially-, and cycle-resolved laser-induced fluorescence measurements of formaldehyde are conducted. It is attempted to find a cycle-resolved measure of the chemical effect of PI.
Journal Article

Nitric Oxide Measurements in the Core of Diesel Jets Using a Biofuel Blend

2015-04-14
2015-01-0597
Maintaining low NOx emissions over the operating range of diesel engines continues to be a major issue. However, optical measurements of nitric oxide (NO) are lacking particularly in the core of diesel jets, i.e. in the region of premixed combustion close to the spray axis. This is basically caused by severe attenuation of both the laser light and fluorescent emission in laser-induced fluorescence (LIF) applications. Light extinction is reduced by keeping absorption path lengths relatively short in this work, by investigating diesel jets in a combustion vessel instead of an engine. Furthermore, the NO-detection threshold is improved by conducting 1-d line measurements instead of 2-d imaging. The NO-LIF data are corrected for light attenuation by combined LIF and spontaneous Raman scattering. The quantified maximum light attenuation is significantly lower than in comparable previous works, and its wavelength dependence is surprisingly weak.
Journal Article

Cylinder Pressure Based Fuel Path Control for Non-Conventional Combustion Modes

2015-09-06
2015-24-2508
Model-based control strategies along with an adapted calibration process become more important in the overall vehicle development process. The main drivers for this development trend are increasing numbers of vehicle variants and more complex engine hardware, which is required to fulfill the more and more stringent emission legislation and fuel consumption norms. Upcoming fundamental changes in the homologation process with EU 6c, covering an extended range of different operational and ambient conditions, are suspected to intensify this trend. One main reason for the increased calibration effort is the use of various complex aftertreatment technologies amongst different vehicle applications, requiring numerous combustion modes. The different combustion modes range from heating strategies for active Diesel Particulate Filter (DPF) regeneration or early SCR light-off and rich combustion modes to purge the NOx storage catalyst (NSC) up to partially premixed combustion modes.
Journal Article

Effects of LPG Fuel Formulations on Knock and Pre-Ignition Behavior of a DI SI Engine

2015-09-01
2015-01-1947
Due to their CO2 reduction potential and their high knock resistance gaseous fuels present a promising alternative for modern highly boosted spark ignition engines. Especially the direct injection of LPG reveals significant advantages. Previous studies have already shown the highest thermodynamic potential for the LPG direct injection concept and its advantages in comparison to external mixture formation systems. In the performed research study a comparison of different LPG fuels in direct injection mode shows that LPG fuels have better auto-ignition behavior than gasoline. A correlation between auto-ignition behavior and the calculated motor octane number could not be found. However, a significantly higher correlation of R2 = 0.88 - 0.99 for CR13 could be seen when using the methane number. One major challenge in order to implement the LPG direct injection concept is to ensure the liquid state of the fuel under all engine operating conditions.
Journal Article

A Sectoral Approach to Modelling Wall Heat Transfer in Exhaust Ports and Manifolds for Turbocharged Gasoline Engines

2016-04-05
2016-01-0202
A new approach is presented to modelling wall heat transfer in the exhaust port and manifold within 1D gas exchange simulation to ensure a precise calculation of thermal exhaust enthalpy. One of the principal characteristics of this approach is the partition of the exhaust process in a blow-down and a push-out phase. In addition to the split in two phases, the exhaust system is divided into several sections to consider changes in heat transfer characteristics downstream the exhaust valves. Principally, the convective heat transfer is described by the characteristic numbers of Nusselt, Reynolds and Prandtl. However, the phase individual correlation coefficients are derived from 3D CFD investigations of the flow in the exhaust system combined with Low-Re turbulence modelling. Furthermore, heat losses on the valve and the seat ring surfaces are considered by an empirical model approach.
Journal Article

Fuel Cell System Development: A Strong Influence on FCEV Performance

2018-04-03
2018-01-1305
In this article, the development challenges of a fuel cell system are explained using the example of the BREEZE! fuel cell range extender (FC-REX) applied in an FEV Liiona. The FEV Liiona is a battery electric vehicle based on a Fiat 500 developed by FEV. The BREEZE! system is the first applied 30 kW low temperature polymer electrolyte membrane (LT PEM) fuel cell system in the subcompact vehicle class. Due to the highly integrated system approach and dry cathode operation, a compact design of the range extender module with a system power density of 0.45 kW/l can be achieved so that the vehicle interior including trunk remains completely usable. System development for fuel cells significantly influences performance, efficiency, package, durability, and required maintenance effort of a fuel cell electric powertrain. In order to ensure safe and reliable operation, the fuel cell system has to be supplied with sufficient amounts of air, hydrogen, and coolant flows.
Journal Article

Laser-Induced Incandescence Measurements of Tailor-Made Fuels in an Optical Single-Cylinder Diesel Engine

2017-03-28
2017-01-0711
The influence of two oxygenated tailor-made fuels on soot formation and oxidation in an optical single cylinder research diesel engine has been studied. For the investigation a planar laser-induced incandescence (PLII) measurement technique was applied to the engine in order to detect and evaluate the planar soot distribution for the two bio fuels within a laser light sheet. Furthermore the OH* chemiluminescence and broad band soot luminosity was visualized by high speed imaging to compare the ignition and combustion behavior of tested fuels: Two C8 oxygenates, di-n-butylether (DNBE) and 1-octanol. Both fuels have the same molecular formula but differ in their molecular structure. DNBE ignites fast and burns mostly diffusive while 1-octanol has a low cetane number and therefore it has a longer ignition delay but a more homogeneous mixture at time of ignition. The two bio fuels were finally compared to conventional diesel fuel.
Journal Article

An Experimental Investigation of Dual-Fuel Combustion in a Light Duty Diesel Engine by In-Cylinder Blending of Ethanol and Diesel

2015-09-01
2015-01-1801
This study investigated dual-fuel operation with a light duty Diesel engine over a wide engine load range. Ethanol was hereby injected into the intake duct, while Diesel was injected directly into the cylinder. At low loads, high ethanol shares are critical in terms of combustion stability and emissions of unburnt hydrocarbons. As the load increases, the rates of heat release become problematic with regard to noise and mechanical stress. At higher loads, an advanced injection of Diesel was found to be beneficial in terms of combustion noise and emissions. For all tests, engine-out NOx emissions were kept within the EU-6.1 limit.
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Journal Article

Optimization of Electrified Powertrains for City Cars

2012-06-01
2011-01-2451
Sustainable and energy-efficient consumption is a main concern in contemporary society. Driven by more stringent international requirements, automobile manufacturers have shifted the focus of development into new technologies such as Hybrid Electric Vehicles (HEVs). These powertrains offer significant improvements in the efficiency of the propulsion system compared to conventional vehicles, but they also lead to higher complexities in the design process and in the control strategy. In order to obtain an optimum powertrain configuration, each component has to be laid out considering the best powertrain efficiency. With such a perspective, a simulation study was performed for the purpose of minimizing well-to-wheel CO2 emissions of a city car through electrification. Three different innovative systems, a Series Hybrid Electric Vehicle (SHEV), a Mixed Hybrid Electric Vehicle (MHEV) and a Battery Electric Vehicle (BEV) were compared to a conventional one.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
Journal Article

Impact of Biomass-Derived Fuels on Soot Oxidation and DPF Regeneration Behavior

2013-04-08
2013-01-1551
To comply with the new regulations on particulate matter emissions, the manufacturers of light-duty as well as heavy-duty vehicles more commonly use diesel particulate filters (DPF). The regeneration of DPF depends to a significant extent on the properties of the soot stored. Within the Cluster of Excellence "Tailor-Made Fuels from Biomass (TMFB)" at RWTH Aachen University, the Institute for Combustion Engines carried out a detailed investigation program to explore the potential of future biofuel candidates for optimized combustion systems. The experiments for particulate measurements and analysis were conducted on a EURO 6-compliant High Efficiency Diesel Combustion System (HECS) with petroleum-based diesel fuel as reference and a today's commercial biofuel (i.e., FAME) as well as a potential future biomass-derived fuel candidate (i.e., 2-MTHF/DBE). Thermo gravimetric analyzer (TGA) was used in this study to evaluate the oxidative reactivity of the soot.
Journal Article

Future Specification of Automotive LPG Fuels for Modern Turbocharged DI SI Engines with Today’s High Pressure Fuel Pumps

2016-10-17
2016-01-2255
Liquefied Petroleum Gas direct injection (LPG DI) is believed to be the key enabler for the adaption of modern downsized gasoline engines to the usage of LPG, since LPG DI avoids the significant low end torque drop, which goes along with the application of conventional LPG port fuel injection systems to downsized gasoline DI engines, and provides higher combustion efficiencies. However, especially the high vapor pressure of C3 hydrocarbons can result in hot fuel handling issues as evaporation or even in reaching the supercritical state of LPG upstream or inside the high pressure pump (HPP). This is particularly critical under hot soak conditions. As a result of a rapid fuel density drop close to the supercritical point, the HPP is not able to keep the rail pressure constant and the engine stalls.
Journal Article

Optimization of Diesel Combustion and Emissions with Tailor-Made Fuels from Biomass

2013-09-08
2013-24-0059
In order to thoroughly investigate and improve the path from biofuel production to combustion, the Cluster of Excellence “Tailor-Made Fuels from Biomass” was installed at RWTH Aachen University in 2007. Since then, a variety of fuel candidates have been investigated. In particular, 2-methyl tetrahydrofurane (2-MTHF) has shown excellent performance w.r.t. the particulate (PM) / NOx trade-off [1]. Unfortunately, the long ignition delay results in increased HC-, CO- and noise emissions. To overcome this problem, the addition of di-n-butylether (DNBE, CN ∼ 100) to 2-MTHF was analyzed. By blending these two in different volumetric shares, the effects of the different mixture formation and combustion characteristics, especially on the HC-, CO- and noise emissions, have been carefully analyzed. In addition, the overall emission performance has been compared to EN590 diesel.
Journal Article

Mixture-Formation Analysis by PLIF in an HSDI Diesel Engine Using C8-Oxygenates as the Fuel

2015-04-14
2015-01-0960
With increasing interest in new biofuel candidates, 1-octanol and di-n-butylether (DNBE) were presented in recent studies. Although these molecular species are isomers, their properties are substantially different. In contrast to DNBE, 1-octanol is almost a gasoline-type fuel in terms of its auto-ignition quality. Thus, there are problems associated with engine start-up for neat 1-octanol. In order to find a suitable glow-plug position, mixture formation is studied in the cylinder under almost idle operating conditions in the present work. This is conducted by planar laser-induced fluorescence in a high-speed direct-injection optical diesel engine. The investigated C8-oxygenates are also significantly different in terms of their evaporation characteristics. Thus, in-cylinder mixture formation of these two species is compared in this work, allowing conclusions on combustion behavior and exhaust emissions.
X