Refine Your Search

Topic

Search Results

Technical Paper

Systems Design for Ceramic LFA Substrates for Diesel/Natural Gas Flow- Through Catalysts

1995-02-01
950150
The monolithic, large frontal area (LFA), extruded ceramic substrates for diesel flow-through catalysts offer unique advantages of design versatility, longterm durability, ease of packaging and low Cost [1, 2]*. This paper examines the effect of cell density and cell size on catalyst light-off performance, back pressure, mechanical and thermal durability, and the steady-state catalytic activity. The factors which affect these performance characteristics are discussed. Certain trade-offs in performance parameters, which are necessary for optimum systems design, are also discussed. Following a brief discussion of design methodology, substrate selection, substrate/washcoat interaction and packaging specifications, the durability data for ceramic flow-through catalysts are summarized. A total of over 18 million vehicle miles have been successfully demonstrated by ceramic LFA catalysts using the systems design approach.
Technical Paper

Advances in Durability and Performance of Ceramic Preconverter Systems

1995-02-01
950407
Ceramic preconverters have become a viable strategy to meet the California LEV and ULEV standards. To minimize cold start emissions the preconverter must light-off quickly and be catalytically efficient. In addition, it must also survive the more severe thermomechanical requirements posed by its close proximity to the engine. The viability of the ceramic preconverter system to meet both emissions and durability requirements has also been reported recently(1,2). This paper further investigates the impact preconverter design parameters such as cell density, composition, volume, and catalyst technology have on emissions and pressure drop. In addition, different preconverter/main converter configurations in conjunction with electrically heated catalyst systems are evaluated. The results demonstrate that ceramic preconverters substantially reduce cold start emissions. Their effectiveness depends on preconverter design and volume, catalyst technology, and the system configuration.
Technical Paper

High Temperature Compressive Strength of Extruded Cordierite Ceramic Substrates

1995-02-01
950787
High temperature modulus of rupture (MOR) data, published previously, show that the ceramic catalyst supports get stronger with temperature due to the absence of water vapor and closure of microcracks which would otherwise act as stress concentrators [1, 2 and 3]*. The increased MOR value is partially responsible for the excellent durability of ceramic catalyst supports at high temperature. In this paper, we will present the compressive strength data of ceramic substrates at high temperature, namely the crush strength along B-axis and biaxial compressive strength of the whole substrate. Since the honeycomb strength is directly related to that of the individual cell wall, the compressive strength should also increase with temperature similar to the modulus of rupture. Accordingly, the ceramic substrates are capable of supporting higher mounting pressures exerted by the intumescent mat at high temperature [4].
Technical Paper

Strength and Thermal Shock Resistance of Segmented Wall-Flow Diesel Filters

1986-03-01
860008
The physical properties, including modulus of rupture, structural modulus and thermal expansion coefficient of segmented, large frontal area, ceramic wall-flow diesel filters are presented. The effect of cement composition, its coverage and segmentation pattern on these properties and on the failure modes during strength testing is discussed. Using these properties the mechanical and thermal integrities of LFA filter are computed and compared with those of monolithic filter,. The paper discusses both the high efficiency (EX-47, 100/17) and low efficiency (EX-66, 100/25) filter compositions.
Technical Paper

Long-Term Durability of Ceramic Honeycombs for Automotive Emissions Control

1985-02-01
850130
Ceramic honeycomb structures have been used successfully as catalyst supports in gasoline-powered vehicles for the past ten years. They are currently the leading candidate for trapping and oxidizing the carbonaceous particulate emissions in diesel-powered vehicles. In both of these applications the long term durability of the ceramic substrate is of prime importance. This, in turn, depends on the physical properties of cellular structure, cyclic nature of service loads and design of the mounting assembly. This paper examines the nature and dependence of both the mechanical and thermal stresses in the substrate on its geometry, properties, mounting parameters, and the operating conditions. It also compares the observed failure modes with those predicted by the theory. The paper concludes with a set of recommendations for optimal systems design and acceptable operating conditions which will promote the long term durability of the ceramic substrate.
Technical Paper

Failure Modes During Static and Impact Loading of Light-Weight Rectangular Glass Headlamps

1984-04-01
840745
An approximate analytical solution for stress distribution in the rectangular lens of a glass headlamp due to static and impact loading is presented. Both low mass/high velocity and high mass/low velocity impact data and the resulting failure modes are discussed. Generally, glass headlamp lenses break either due to Hertz stress (front surface under high localized tension), or due to flexural stress (back surface under tension due to bending), or the combination of two. Failure due to flexural stress is illustrated by a star-crack, while that due to Hertz stress is illustrated by a Hertzian cone or “bullet hole” in the lens. The failure mode during low mass/high velocity impact is predominantly Hertzian while that during high mass/low velocity impact is flexural for lenses 0.120″ to 0.150′ thick. No significant differences are observed in the impact resistance of standard and light-weight lenses in this thickness range.
Technical Paper

High Temperature Creep Behavior of Ceramic and Metal Substrates

1991-02-01
910374
The high temperature creep data for radial specimens, cut from metal and ceramic substrates and subjected to compressive loads representative of mounting and thermal pressure are presented as function of load and temperature. These data show that the creep resistance of metallic specimens under sustained loading varies with temperature and is orders of magnitude lower than that of ceramic specimens. The observed creep deformation in metallic specimens reduces their open frontal area and hydraulic diameter with potentially adverse impact on pressure drop across the metallic substrate.
Technical Paper

Optimization of Substrate/Washcoat Interaction for Improved Catalyst Durability

1991-02-01
910372
The substrate/washcoat systems which preserve both the mechanical and thermal attributes of cordierite substrates are most desirable for prolonged durability of automotive catalysts. This paper provides a micromechanics viewpoint of substrate/washcoat composite whose properties are predictable, measurable and relevant to catalyst durability. The micromechanics model helps quantify substrate/washcoat interaction which controls the long-term catalyst performance. Three different examples of substrate/washcoat systems are used here to illustrate the optimization process during the development of new substrates or washcoat technologies to meet the more stringent emission and durability requirements of advanced catalysts for the 1990s.
Technical Paper

Durable Packaging Design for Cordierite Ceramic Catalysts for Motorcycle Application

1993-03-01
930161
The motorcycle emissions regulations for both two-stroke and four-stroke engines, which are receiving worldwide attention, will go into effect in the very near future. To meet these regulations, the motorcycles will require a catalyst in conjunction with the muffler due to space limitations. The combination of high engine speeds, high vibrational acceleration, high HC and CO emissions, high oxidation exotherms, and stringent durability requirements, points to cordierite ceramic substrate as an ideal catalyst support. However, as an integral unit within the muffler, its packaging design must be capable of withstanding isothermal operating conditions which may exceed the upper intumescent temperature limit of the ceramic mat. This paper describes a durable packaging design for the ceramic catalyst which employs a hybrid ceramic mat, special end rings and gaskets, and high strength stainless steel can.
Technical Paper

Size Effect on the Strength of Ceramic Catalyst Supports

1992-10-01
922333
The typical ceramic catalyst support for automotive application has a total volume of 1640 cm3. Approximately 10% of this volume is subjected to tensile thermal stresses due to a radial temperature gradient in service [1]*. These stresses are kept below 50% of the substrate strength to minimize fatigue degradation and to ensure long-term durability [2]. However, the tensile strength measurements are carried out in 4-point bending using 2.5 cm wide x 1.2 cm thick x 10 cm long modulus of rupture bars in which the specimen volume subjected to tensile stress is merely 3.2 cm3 or 0.2% of the total substrate volume [3]. Thus, a large specimen population is often necessary (50 specimens or more) to obtain the strength distribution representative of full substrate. This is particularly true for large frontal area substrates for diesel catalyst supports with an order of magnitude larger stressed volume. In this paper, the modulus of rupture data are obtained as function of specimen size.
Technical Paper

New Developments in Packaging of Ceramic Honeycomb Catalysts

1992-10-01
922252
The emissions regulations for the decade of 1990s are not only more stringent but are also required of vehicles other than passenger cars, for example both diesel and gasoline trucks as well as motorcycles. These latter applications involve different operating conditions in terms of space velocities, temperature profiles, and vibrational loads than those typical of passenger cars [1]*. In addition, the performance and durability requirements for these applications call for lower back pressure and longer service life. Furthermore, the space availability and the operating temperature range differ vastly so as to require special packaging designs to meet the durability requirements. This paper provides new data for ceramic insulating mats, both intumescent and non-intumescent [2,3], and ceramic substrates with thin and thick walls and square and triangular cell geometries [4], which are under development for non-passenger car applications indicated above.
Technical Paper

Experimental Verification of Residual Compression in Tempered Automotive Glass with Holes

2003-01-18
2003-26-0012
Tempered float glass is commonly used for both side windows and backlites in the automotive industry. The success of such products is primarily attributed to high level of residual compression, following tempering, which provides abrasion resistance as well as 3X higher functional strength to sustain mechanical, vibrational and thermal stresses during the vehicle's lifetime. Certain applications of tempered glass, however, require mounting holes whose surface-finish must be controlled carefully to withstand transient tensile stresses during tempering. Simultaneously, the nature and magnitude of residual compression at the hole must provide sufficient robustness to bear mounting, vibrational and thermal stresses throughout the life of the vehicle. This paper presents (i) analysis of residual compression at the hole, (ii) measurement of biaxial strength of annealed glass with hole at center, and (iii) measurement of biaxial strength of tempered glass with hole at center.
Technical Paper

Performance and Durability of Advanced Ceramic Catalyst Supports

2003-01-18
2003-26-0015
As emissions regulations become more stringent, catalyst supports with higher cell density, smaller wall thickness, higher surface area and lower thermal mass become more desirable for faster light off and higher conversion efficiency. Simultaneously, however, washcoat formulation and loadings have to be adjusted to yield higher and more stable B.E.T. area at operating temperatures representative of close-coupled application. The thermal mass contribution of advanced washcoat system to catalyst supports with 600/4 and 900/2 cell structures may approach or even exceed that of uncoated substrates. Under such high washcoat loadings, the composite properties of advanced catalysts may be affected adversely in terms of their physical durability, notably in close-coupled application. This paper focuses on potential solutions to light-off performance and FTP efficiency, via optimization of substrate/washcoat interaction, geometric design and the mounting system.
Technical Paper

Thin Wall Ceramic Catalyst Supports

1999-03-01
1999-01-0269
The stringent emissions regulations, notably for cold start, have led to design modifications in each of the converter components, notably the catalyst support. With the faster light–off requirement, the catalyst support must have a lower thermal mass so as to reach the 50% conversion temperature as quickly as possible. Simultaneously, for higher warmed–up efficiency, the catalyst support must offer higher geometric surface area. Similarly, for improved fuel economy and for preserving engine power, the catalyst support must exert lower back pressure. Indeed, these three performance requirements might be met by certain thin wall ceramic substrates, including 400/4.5 and 600/4.3, which have 22% lower thermal mass, 25% higher geometric surface area and 8% larger open frontal area than the standard 400/6.5 substrate. Testing by automakers and international laboratories on engine dynamometers has verified the above advantages of thin wall substrates.
Technical Paper

Robust Packaging System for Diesel/Natural Gas Oxidation Catalysts

1996-02-01
960471
The 290,000 vehicle-mile durability requirement for diesel/natural gas oxidation catalysts calls for robust packaging systems which ensure a positive mounting pressure on the ceramic flow-through converter under all operating conditions. New data for substrate/washcoat interaction, intumescent mat performance in dry and wet states, and high temperature strength and oxidation resistance of stainless steels, and canning techniques insensitive to tolerance stack-up are reviewed which help optimize packaging durability. Factors contributing to robustness of converter components are identified and methods to quantify their impact on design optimization are described. CERAMIC FLOW-THROUGH catalysts for diesel exhaust aftertreatment have met with much success since their introduction in 1993.
Technical Paper

Ceramic Converter Technology for Automotive Emissions Control

1991-09-01
911736
This paper reviews the development and successful application of ceramic catalytic converters for controlling automotive exhaust emissions. It presents the scientific rationale for designing the high surface area substrate to meet both performance and durability requirements. This is followed by a step-by-step design process for each of the converter components. The initial design stage focuses on understanding automaker's requirements and optimizing component design commensurate with them. The intermediate stage involves laboratory testing of converter components in simulated environment and ensuring component compatibility from durability point of view. The final design stage addresses the critical tests on converter assembly to ensure performance and field durability. In addition, it examines the necessary trade-offs and associated design modifications and evaluates their impact on warranty cost for system failure.
Technical Paper

Advanced Three-Way Converter System for High Temperature Exhaust Aftertreatment

1997-02-24
970265
An advanced three-way converter system with significant improvements in light-off performance, conversion efficiency, thermal stability and physical durability at high operating temperature is described. The converter system is comprised of a light-weight ceramic substrate with high surface area triangular cell structure, a new catalyst formulation with enhanced thermal stability and good substrate compatibility, and a durable packaging design which together lead to consistent improvements in high temperature performance and durability. Experimental data including FTP performance, canning trials, and high temperature vibration and thermal shock tests for both the advanced and standard three-way converter systems are presented.
Technical Paper

Impact of Washcoat Formulation on Properties and Performance of Cordierite Ceramic Converters

1991-10-01
912370
The dual requirement of high conversion efficiency and 50K mile durability for cordierite ceramic converters is achievable through optimization of washcoat and catalyst formulation. This paper presents new data for high temperature physical properties, light-off performance, conversion efficiency and pressure drop through an oval cordierite ceramic converter with triangular cell structure and two different washcoat formulations; namely standard vs high-tech. Both of the washcoat systems have a beneficial effect on strength properties with nominal impact on thermal shock resistance. Both the standard and high-tech catalysts provide identical light-off performance for CO, HC and NOx conversion. The high-tech washcoat and catalyst system, in particular, provides consistently superior conversion efficiency for CO, HC and NOx. The pressure drop across the catalyst depends on hydraulic diameter and is only 8% higher for high-tech washcoat than for standard washcoat.
Technical Paper

Performance Parameters for Advanced Ceramic Catalyst Supports

1999-10-25
1999-01-3631
The stringent emissions legislation has necessitated advances in the catalytic converter system comprising the substrate, washcoat technology, catalyst formulation and packaging design. These advances are focused on reducing light-off emissions at lower temperature or shorter time, increasing FTP efficiency, reducing back pressure and meeting the mechanical and thermal durability requirements over 100,000 vehicle miles. This paper reviews the role of cordierite ceramic substrate and how its design can help meet the stringent emissions legislation. In particular, it compares the effect of cell geometry and size on performance parameters like geometric surface area, open frontal area, hydraulic diameter, thermal mass, heat transfer factor, mechanical integrity factor and thermal integrity factor - all of which have a bearing on emissions, back pressure and durability. The properties of advanced cell configurations like hexagon are compared with those of standard square cell.
Technical Paper

Durability and Performance of Thin Wall Ceramic Substrates

1999-01-13
990011
The stringent emissions standards in the late 1990's like NLEV, ULEV and SULEV have led to major modifications in the composition and design of ceramic substrates. These changes have been necessitated to reduce cold start emissions, meet OBD-II requirements, and to ensure 100,000 mile durability requirement in a cost-effective manner. This paper presents the key advances in ceramic substrates which include lower thermal expansion, lighter weight, higher surface area and improved manufacturing process all of which help meet performance requirements. In addition to above benefits, the compressive and tensile strengths of lightweight substrates, as well as their thermal shock resistance, are found to be adequate following the application of high surface area alumina washcoat. The strength properties are crucial for ensuring safe handling of the substrate during coating and canning and for its long term mechanical durability in service.
X