Refine Your Search

Search Results

Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporating Spray via a 2-D Mie-Scattering Imaging Technique

1993-10-01
932653
The cross-sectional distribution of fuel vapor concentration in an evaporating spray was measured quantitatively by a new scattering imaging technique, silicone particle scattering imaging method, which was proposed in a previous paper[1]. When fuel containing silicone oil injected into a nitrogen environment at high temperature, the volatile base fuel in the droplets vaporized rapidly, leaving behind small droplets of silicone oil suspended in the vapor-gas mixture. The silicone oil droplets were illuminated by a thin laser sheet, and the scattered light was imaged by a CCD camera. The cross-sectional distribution of vapor concentration was estimated from the scattering image of the silicone oil droplets by Mie scattering theory. The results demonstrated clearly the inhomogeneity of the fuel vapor concentration. The distribution of vapor concentration was discontinuous, and islands of rich mixture with a scale of several millimeters existed in the center region of the spray.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

Ignition, Combustion and Emissions in a DI Diesel Engine Equipped with a Micro-Hole Nozzle

1996-02-01
960321
In an attempt to achieve lean combustion in Diesel engines which has a potential for simultaneous reduction in no and soot, the authors developed a micro-hole nozzle which has orifices with a diameter as small as 0.06 mm. Combustion tests were carried out using a rapid compression-expansion machine which has a DI Diesel type combustion chamber equipped with the micro-hole nozzle. A comparison with the result of a conventional nozzle experiment revealed that the ignition delay was shortened by 30 %, and in spite of that, both peaks of initial premixed combustion and diffusion combustion increased significantly. The combustion in the case of the micro-hole nozzle experiment was accompanied with a decrease in soot emission, whereas an increase in NO emission.
Technical Paper

Numerical Simulation of Turbulent Dispersion of Fuel Droplets in an Unsteady Spray via Discrete Vortex Method

1995-10-01
952433
The turbulent dispersion of particles in an unsteady two dimensional particle-laden jet was simulated by a discrete vortex method coupling with a model of gas/particles interaction. Numerical analysis of a spray yielded the distributions of vorticity, fuel mass concentration and local Sauter mean diameter (SMD) of droplets in a spray. The predicted distribution of local SMD of droplets in a spray demonstrated that the size of droplets in the spray periphery is larger than that of droplets in the center region of spray. This trend of distribution of drop size coincided with that of measured one. The predicted distributions of drop size and vorticity revealed that the larger droplets are easily centrifuged to the periphery of the spray. The effects of the pattern of injection rate on the mixing process in a transient spray were also investigated.
Technical Paper

A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion

1981-09-01
811004
As a basic tool for fundamental studies on combustion and heat transfer in diesel engines, a new rapid compression machine with a cylinder bore of 200 mm was developed which can realize in it a free diesel flame in a quiescent atmosphere, a diesel flame in a swirl, and a diesel flame impinging on the wall. The piston of this machine is driven by high pressure nitrogen, and its speed is controlled by a sophisticated hydraulic system. This paper describes the details of the mechanism and performances of the machine, and presents some examples of studies conducted with this machine.
Technical Paper

Measurement of Flame Temperature Distribution in a D.I. Diesel Engine by Means of Image Analysis of Nega-Color Photographs

1981-02-01
810183
A new technique was proposed for measuring instantaneous distributions of flame temperature and KL factor of luminous flames. Here the principle of the two-color method was used to calculate flame temperature and KL factor from the two-color densities of a film image taken on a nega-color film. We applied this technique to the high speed nega-color photographs of flames in a D. I. diesel engine operated with varying swirl ratios, and discussed the measured results of instantaneous distributions of flame temperature and KL factors.
Technical Paper

Application of Laser Doppler Anemometry to a Motored Diesel Engine

1980-09-01
800965
Some problems associated with applying LDA to the measurement of air motion in the engine’s cylinder are studied experimentally for both the forward and the back scattering technique in a motored diesel engine. The effects of the doppler broadening caused by the velocity gradient and the diameters of the scattering particles are discossed. The decaying process and the structure of the in-cylinder flow field are studied using the measurements of the main flow velocity, the turbulent intensity and macro scales and normalised power spectrum of the turbulence. A comparison measurement is also made between the forward scattering and the back scattering techniques.
Technical Paper

A Study on the Application of the Two–Color Method to the Measurement of Flame Temperature and Soot Concentration in Diesel Engines

1980-09-01
800970
Flame temperature and KL factor in a DI diesel engine are measured optically by the two-color method. Some differences are observed between the measure values at visible and infrared wavelengths. These differences are caused by: (1) effect of change of index α in time at infrared wavelength during combustion period; (2) effect of distributions of temperature and soot concentration along optical path; and (3) effect of reflection at the walls. The optical characteristics and some other problems on the instrumentation of the two-color method at both wavelengths are also discussed.
Technical Paper

A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine

1980-02-01
800254
The concentrations of soot, NO and the other combustion products were measured by incylinder gas sampling in a DI diesel engine. The effects of injection timing, swirl ratio, and combustion chamber geometry on the formation and emission processes of soot and NO were studied. The following results were obtained: (1) Soot is promptly formed in the flame during the early combustion period where the equivalence ratio in the flame is high over 1.0. Thereafter almost all the formed soot is swiftly burnd up by oxidation during the middle combustion period. This process mainly determines the exhaust soot concentration. (2) NO is formed in the flame during the early and middle combustion period where the flame temperature is high over 2000 K. The highest NO concentration is observed at the flame tip swept by the air swirl. Though the concentration of the formed NO decreases by dilusion it nearly constant during the later combustion period.
Technical Paper

The Effects of Some Engine Variables on Measured Rates of Air Entrainment and Heat Release in a DI Diesel Engine

1980-02-01
800253
The rate of air entrainment into the flame and the rate of heat release are thermodynamically calculated in a DI diesel engine: A two-zone model is proposed which uses as input data three measured values of cylinder pressure, flame temperature, and injection rate. The correlations between both rates under various conditions make it clear that the combustion during early and main periods of diffusion combustion is mainly controlled by air entrainment into the flame. The effects of injection pressure, piston configuration, and swirl intensity on the air entrainment are also studied. And the extent of mixing in the flame is evaluated by the equivalence ratio in the flame which is also obtained by the same model. The trends of exhausted NO and soot concentrations well correlate with the equivalence ratios in the flame and measured flame temperatures under all conditions studied.
Technical Paper

A Study on the Time and Space Resolved Measurement of Flame Temperature and Soot Concentration in a D. I. Diesel Engine by the Two-Color Method

1979-02-01
790491
The two-color method regarding the visible wavelength radiation from soot particles in flames was closely studied in order to establish it as a measuring technique of the flame temperature and soot concentration in diesel engines. The accuracy of the temperature calibration of the measuring equipment was assured by a newly developed high temperature black body furnace and a standard tungsten lamp. The emissivity of diesel flames, which is the most important value in this method, was investigated through both the spectroscopic analysis of soot sampled from a diesel flame and the comparative measurements between the two-color method and the emission-absorption method. The examined two-color method was applied to a direct injection diesel engine. The time and space resolved values of temperature and soot concentration were obtained for the first time.
Technical Paper

Measurement of Droplet Diameter and Fuel Concentration in a Non-Evaporating Diesel Spray by Means of an image Analysis of Shadow Photographs

1984-02-01
840276
A new method was developed which measures the atomization characteristics of a non-evaporating, axisymmetric diesel spray: The film image density of the high speed focused shadow photographs of a spray was analyzed based on the incident light extinction principle, and the Sauter mean diameter and the fuel concentration distribution were calculated from the image data and the measured injection rate with the help of the onion peeling model. The measured Sauter mean diameter showed good agreement with the diameter measured by the conventional immersion method, and also the measured fuel concentration distribution along the spray axis was proved to coincide well with the predicted result by Che one dimentional quasi-steady jet model except at a region near the spray tip.
Technical Paper

Prediction of the Rate of Heat Release of an Axisymmetrical Diesel Flame in a Rapid Compression Machine

1984-02-01
840519
A phenomenological model for predicting the rate of heat release of an axisymmetrical diesel flame which was achieved in a rapid compression machine has been proposed: Basing on the experimental observations, authors have introduced a new expression about the effects of abrupt thermal expansion due to the initial combustion on the air entrainment. A simple probability density function was also employed to express the distribution of the local equivalence ratio in the flame. The predicted rate of heat release showed good agreement with the experimental results in the diffusion combustion phase.
Technical Paper

A Study of Fuel Injection Systems in Diesel Engines

1976-02-01
760551
In this study, the authors show their analytical model of the fuel injection system in a diesel engine, which is constructed to be as accurate but as simple as possible and to have good application in the development of new fuel injection systems. In the first part, the authors initially describe the model assumptions, classification of injection phenomena, and fundamental equations considering the compressibility, inertia and viscocity of hydraulics and the movements of valves and other components to improve the accuracy of the systems. Secondly, regarding the experimental constants and physical properties of the fuel, the authors show the method of selection they used to simplify the analytical model and to get good agreement as a result but without losing physical meanings.
X