Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Systematic Development of Hybrid Systems for Commercial Vehicles

The reduction of CO₂ emissions represents a major goal of governments worldwide. In developed countries, approximately 20% of the CO₂ emissions originate from transport, one third of this from commercial vehicles. CO₂ emission legislation is in place for passenger cars in a number of major markets. For commercial vehicles such legislation was also already partly published or is under discussion. Furthermore the commercial vehicles market is very cost sensitive. Thus the major share of fuel cost in the total cost of ownership of commercial vehicles was already in the past a major driver for the development of efficient drivetrain solutions. These aspects make the use of new powertrain technologies, specifically hybridization, mandatory for future commercial powertrains. While some technologies offer a greater potential for CO₂ reduction than others, they might not represent the overall optimum with regard to the total cost of ownership.
Technical Paper

Consistent Development Methodology for hybrid AWD powertrains

Highest grow or highest attention in vehicles power-train is related to AWD and hybrid concepts. Some of the targets for these technologies are conflicting, others are very similar, and sometimes it depends on the application. In a first look it is very questionable weather these technologies should be combined. But it can be shown, that the combination makes quite some sense. It is possible to get the superior performance and enhance safety combined with reasonable fuel economy by hybridizing an AWD powertrain. From simulation to testing, efficient processes and a consistent development platform is key to fulfill all the development tasks in the environment of this increased complexity. Simulation and benchmark activities are valuable in the early project phases to define the targets and create the specifications. In the virtual world the system selection is a major task. To get appropriate results software modules are incorporated in the simulation environment.
Technical Paper

ISAD®-A Computer Controlled Integrated Starter-Alternator-Damper-System

This paper will present a system still in development that can be used both to generate electric energy and to start combustion engines. What's more, this system functions as multiband damper and takes over the complete flywheel function. Conventional technology as we know it today is briefly reviewed and subjected to a comparison with ISAD® technology. This paper contains system descriptions, readings and diagrams for various functions and a presentation of the whole system in a select trial vehicle. The results show that a system of this kind is not only capable of replacing current technology but can also cover all the (presently known) future requirements - noiseless start operation, low-vibration idle, acceleration boosting and an extremely powerful alternator (>6-10 kW at η > 80%), which allows, for example, for the electrification of all the vehicle's auxiliary aggregates. Significant fuel savings and emissions reductions are also achieved.