Refine Your Search

Search Results

Journal Article

Integration of a Torsional Stiffness Model into an Existing Heavy Truck Vehicle Dynamics Model

2010-04-12
2010-01-0099
Torsional stiffness properties were developed for both a 53-foot box trailer and a 28-foot flatbed control trailer based on experimental measurements. In order to study the effect of torsional stiffness on the dynamics of a heavy truck vehicle dynamics computer model, static maneuvers were conducted comparing different torsional stiffness values to the original rigid vehicle model. Stiffness properties were first developed for a truck tractor model. It was found that the incorporation of a torsional stiffness model had only a minor effect on the overall tractor response for steady-state maneuvers up to 0.4 g lateral acceleration. The effect of torsional stiffness was also studied for the trailer portion of the existing model.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Simulator Study of Heavy Truck Air Disc Brake Effectiveness During Emergency Braking

2008-04-14
2008-01-1498
In crashes between heavy trucks and light vehicles, most of the fatalities are the occupants of the light vehicle. A reduction in heavy truck stopping distance should lead to a reduction in the number of crashes, the severity of crashes, and consequently the numbers of fatalities and injuries. This study made use of the National Advanced Driving Simulator (NADS). NADS is a full immersion driving simulator used to study driver behavior as well as driver-vehicle reactions and responses. The vehicle dynamics model of the existing heavy truck on NADS had been modified with the creation of two additional brake models. The first was a modified S-cam (larger drums and shoes) and the second was an air-actuated disc brake system. A sample of 108 CDL-licensed drivers was split evenly among the simulations using each of the three braking systems. The drivers were presented with four different emergency stopping situations.
Technical Paper

Vehicle Dynamics Modeling and Validation of the 2003 Ford Expedition with ESC using CarSim

2009-04-20
2009-01-0452
The paper discusses the development of a vehicle dynamics model and model validation of the 2003 Ford Expedition in CarSim. The accuracy of results obtained from simulations depends on the realism of the model which in turn depends on the measured data used to define the model parameters. The paper describes the tests used to measure the vehicle data and also gives a detailed account of the methodology used to determine parameters for the CarSim Ford Expedition model. The vehicle model was validated by comparing simulation results with experimental testing. Bounce and Roll tests in CarSim were used to validate the suspension and steering kinematics and compliances. Field test data of the Sine with Dwell maneuver was used for the vehicle model validation. The paper also discusses the development of a functional electronic stability control system and its effect on vehicle handling response in the Sine with Dwell maneuver.
Technical Paper

Simulation Results from a Model of a Tractor Trailer Vehicle Equipped with Roll Stability Control

2010-04-12
2010-01-0098
In 2007, a software model of a Roll Stability Control (RSC) system was developed based on test data for a Volvo tractor at NHTSA's Vehicle Research and Test Center (VRTC). This model was designed to simulate the RSC performance of a commercially available Electronic Stability Control (ESC) system. The RSC model was developed in Simulink and integrated with the available braking model (TruckSim) for the truck. The Simulink models were run in parallel with the vehicle dynamics model of a truck in TruckSim. The complete vehicle model including the RSC system model is used to simulate the behavior of the actual truck and determine the capability of the RSC system in preventing rollovers under different conditions. Several simulations were performed to study the behavior of the model developed and to compare its performance with that of an actual test vehicle equipped with RSC.
Technical Paper

Validation and Enhancement of a Heavy Truck Simulation Model with an Electronic Stability Control Model

2010-04-12
2010-01-0104
Validation was performed on an existing heavy truck vehicle dynamics computer model with roll stability control (RSC). The first stage in this validation was to compare the response of the simulated tractor to that of the experimental tractor. By looking at the steady-state gains of the tractor, adjustments were made to the model to more closely match the experimental results. These adjustments included suspension and steering compliances, as well as auxiliary roll moment modifications. Once the validation of the truck tractor was completed for the current configuration, the existing 53-foot box trailer model was added to the vehicle model. The next stage in experimental validation for the current tractor-trailer model was to incorporate suspension compliances and modify the auxiliary roll stiffness to more closely model the experimental response of the vehicle. The final validation stage was to implement some minor modifications to the existing RSC model.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Results from NHTSA's Experimental Examination of Selected Maneuvers that may Induce On-Road Untripped, Light Vehicle Rollover

2001-03-05
2001-01-0131
This paper summarizes the results of test maneuvers devised to measure on-road, untripped, rollover propensity. Complete findings from this research are contained in [1]. Twelve test vehicles, representing a wide range of vehicle types and classes were used. Three vehicles from each of four categories: passenger cars, light trucks, vans, and sport utility vehicles, were tested. The vehicles were tested with vehicle characterization and untripped rollover propensity maneuvers. The vehicle characterization maneuvers were designed to determine fundamental vehicle handling properties while the untripped rollover propensity maneuvers were designed to produce two-wheel lift for vehicles with relatively higher rollover propensity potential. The vehicle characterization maneuvers were Pulse Steer, Sinusoidal Sweep, Slowly Increasing Steer, and Slowly Increasing Speed. The rollover propensity maneuvers were J-Turn, J-Turn with Pulse Braking, Fishhook #1 and #2, and Resonant Steer.
Technical Paper

Model Validation of the 1998 Chevrolet Malibu for the National Advanced Driving Simulator

2001-03-05
2001-01-0141
This paper presents an evaluation of a complete vehicle dynamics model for a 1998 Chevrolet Malibu to be used for the National Advanced Driving Simulator. Vehicle handling, braking and powertrain dynamics are evaluated and simulation results are compared with experimental field-testing. NADSdyna, the National Advanced Driving Simulator vehicle dynamics software, is used. The Malibu evaluation covers vehicle directional dynamics that include steady state, transient frequency response, and vehicle longitudinal dynamics composed of acceleration and braking. Also, analyses of the effects of modified tire parameters on vehicle dynamics response is performed. The effects of wind gusts generated by a tractor-trailer and a bus on the Malibu vehicle directional dynamics are analyzed. For the steering system feel, we compare the handwheel torque feedback with the measured data during both high-speed dynamics and in the very low speed tire stick-slip regime.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for the NADS of the 1998 Chevrolet Malibu

2001-03-05
2001-01-0140
The paper discusses the development of a model for a 1998 Chevrolet Malibu for the National Advanced Driving Simulator’s (NADS) vehicle dynamics simulation, NADSdyna. The Malibu is the third vehicle modeled for the NADS, and this is the third paper dealing with model development. SAE Paper 970564 contains details of the model for the 1994 Ford Taurus and SAE Paper 1999–01-0121 contains details of the model for the 1997 Jeep Cherokee. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid body dynamics formulations. The suspension springs and shock absorbers are modeled as elements in the rigid body formulation. To complement the vehicle dynamics for the NADS application, subsystem models that include tire forces, braking, powertrain, aerodynamics, and steering are added to the rigid body dynamics model. The models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation.
Technical Paper

An Experimental Examination of Double Lane Change Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1009
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed during the spring through fall of 2001. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 2” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from four Rollover Resistance maneuvers are presented. The Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are discussed. Details regarding the NHTSA J-Turn, and the three fishhook maneuvers are available in “Volume 1” [2].
Technical Paper

An Experimental Examination of J-Turn and Fishhook Maneuvers That May Induce On-Road, Untripped, Light Vehicle Rollover

2003-03-03
2003-01-1008
Phase IV of the National Highway Traffic Safety Administration's (NHTSA) rollover research program was performed in 2001, starting in the spring and continuing through the fall. The objective of this phase was to obtain the data needed to select a limited set of maneuvers capable of assessing light vehicle rollover resistance. Five Characterization maneuvers and eight Rollover Resistance maneuvers were evaluated [1]. This paper is “Volume 1” of a two-paper account of the research used to develop dynamic maneuver tests for rollover resistance ratings. Test procedures and results from one Characterization maneuver (the Slowly Increasing Steer maneuver) and four Rollover Resistance maneuvers are discussed (the NHTSA J-Turn, Fishhook 1a, Fishhook 1b, and Nissan Fishhook). Details regarding NHTSA's assessment of the Consumers Union Short Course (CUSC), ISO 3888 Part 2, Ford Path Corrected Limit Lane Change (PCL LC), and Open-Loop Pseudo Double Lane Changes are available in “Volume 2” [2].
Technical Paper

Heavy Tractor-Trailer Vehicle Dynamics Modeling for the National Advanced Driving Simulator

2003-03-03
2003-01-0965
This paper presents the development of a real-time vehicle dynamics model of the heavy tractor-trailer combination used in the National Advanced Driving Simulator. The model includes multi-body dynamics of the tractor and trailer chassis, suspension, and steering mechanisms. The rigid body model is formulated using recursive multi-body dynamics code. This model is augmented with subsystem models that include tires, leaf springs, brakes, steering system, and aerodynamic drag. This paper also presents parameter measurement and estimations used to set up the model. Also included are models for brake fade, steering torque resistance, and defective tires.
Technical Paper

The Importance of Tire Lag on Simulated Transient Vehicle Response

1991-02-01
910235
This paper discusses the importance of having an adequate model for the dynamic response characteristics of tire lateral force to steering inputs. Computer simulation and comparison with experimental results are used to show the importance of including appropriate tire dynamics in simulation tire models to produce accurate predictions of vehicle dynamics. Improvements made to the tire dynamics model of an existing vehicle stability and control simulation, the Vehicle Dynamics Analysis, Non-Linear (VDANL) simulation, are presented. Specifically, the improvements include changing the simulation's tire dynamics from first-order system tire side force lag dynamics to second-order system tire slip angle dynamics. A second-order system representation is necessary to model underdamped characteristics of tires at high speeds. Lagging slip angle (an input to the tire model) causes all slip angle dependent tire force and moment outputs to be lagged.
Technical Paper

An Investigation, Via Simulation, of Vehicle Characteristics that Contribute to Steering Maneuver Induced Rollover

1992-02-01
920585
The goal of this research was to find vehicle characteristics which may contribute to steering maneuver induced rollover accidents. This work involved studying vehicle handling dynamics using the Vehicle Dynamics Analysis, Non-Linear (VDANL) computer simulation. The simulation was used to predict vehicle responses while performing 28 different steering induced maneuvers for each of 51 vehicles. Various measures of vehicle response (metrics), such as response times, percent overshoots, etc., were computed for each vehicle from simulation predictions. These vehicle directional response metrics were analyzed in an attempt to identify vehicle characteristics that might be good predictor/explanatory variables for vehicle rollover propensity. The metrics were correlated, using the Statistical Analysis System (SAS) software and logistic regression, with single vehicle accident data from the state of Michigan for the years 1986 through 1988.
Technical Paper

The Variation of Static Rollover Metrics With Vehicle Loading and Between Similar Vehicles

1992-02-01
920583
This paper examines variability of two static rollover metrics, Static Stability Factor (SSF) and Tilt Table Ratio (TTR), due to vehicle loading and vehicle-to-vehicle variation. Variability due to loading was determined by measuring SSF and TTR for 14 vehicles/configurations at multiple loadings. Up to five loadings were used per vehicle/configuration tested. Vehicle-to-vehicle variability was studied by measuring SSF and TTR for ten unmodified vehicles of each of four make/models. Five baseline vehicles, as similar as was feasible, were tested. The other five test vehicles spanned the range of submodels and options available. In general, both SSF and TTR decreased as occupants were added to a vehicle. The change in SSF and TTR per occupant was fairly consistent, with changes in TTR being more consistent. Placing ballast on the floor of the cargo compartment had a mixed effect on SSF, raising it for some vehicles and lowering it for others.
Technical Paper

Simulator Motion Base Sizing Using Simulation

1994-03-01
940227
The National Highway Traffic Safety Administration (NHTSA) has proposed building the National Advanced Driving Simulator (NADS). As proposed, the NADS will move the simulator's cab so that realistic motion cues are provided to the simulator's driver. It is necessary to determine the motion base capabilities that the NADS will need to simulate different severities and types of driving maneuvers with adequate simulated motion fidelity. The objectives of this study were (1) to develop tools, based on existing vehicle dynamics simulations, simulator washout algorithms, and human perceptual models, that allow required motion base capabilities to be determined and (2) to use these tools to perform analyses that determine the motion base capabilities needed by the NADS. The NADS motion base configuration examined during this study, which may not correspond to that used when the NADS is actually constructed, includes an X-Y Carriage capable of large excursions.
Technical Paper

Parameter Measurement and Development of a NADSdyna Validation Data Set for a 1994 Ford Taurus

1997-02-24
970564
This paper discusses the development of a 1994 Ford Taurus vehicle model for the National Advanced Driving Simulator's planned vehicle dynamics simulation, NADSdyna. The front and rear suspensions of the Taurus are modeled using recursive rigid body dynamics formulations. To complement vehicle dynamics, subsystems models that include steering, braking, and tire forces are included. These models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation. The realism of a particular formulation depend heavily on how the parameters are obtained from the physical system. Therefore, the development of a data set for a particular model is as important as the model itself. The methodology for generating the Taurus data set is presented. The power train model is not yet included, so the simulation is run with the vehicle either at constant speed or decelerating.
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

1997-02-24
970565
This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
X