Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Technical Paper

Quantitative 2-D Gas Concentration Measurement by Laser-Beam Scanning Technique with Combination of Absorption and Fluorescense

In order to measure the spatial distribution of fuel jet concentration quantitatively, a technique combining methods of fluorescence with absorption was developed. LIF method can obtain the spatial fuel distribution qualitatively, but quantitative measurement is difficult. Meanwhile, laser-beam absorption method can quantitatively obtain the integrated jet concentration on the light-path. In addition, scanning the laser-beam allows for a quasi 2-D quantitative measurement of the jet concentration. Firstly, in this study, this measurement system was tested in a homogeneously charged field while varying the dopant NO2 concentration, the laser-beam scanning speed, and the ambient pressure. As a result, some data-correction techniques were developed to produce a quantitative measurement. Secondly, this system was applied to gaseous jet fields in a constant volume bomb.
Technical Paper

Analysis of Mixture Formation Process in a PFI Motorcycle Engine

PFI (Port Fuel Injection) gasoline engines for motorcycles have some problems such as slow transient response because of wall wet of fuel caused by the injector's layout. Hence, it is important to understand the characteristics of fuel sprays such as droplet size and distribution of fuel concentration. Considering the spray formation in a port, there are three kinds of the essential elements: breakup, evaporation and wall impingement. However, it is difficult to observe three of them at the same time. Therefore, the authors have made research step by step. In the authors' previous study, the authors focused on the wall collision, droplet sizes, droplet speeds and the space distribution of the droplets. In this study, the authors focused on evaporation. A direct sampling method using FID (Flame Ionization Detector) for evaporating fuel was established and the concentration distribution of evaporating fuel in the port was measured and analyzed.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

Effects of In-Cylinder Flow and Stratified Mixture on HCCI Combustion in High Load

The purpose of this paper is to find a way to extend the high load limit of homogeneous charge compression ignition (HCCI) combustion. This paper presents the effect of in-cylinder flow and stratified mixture on HCCI combustion by experiments and three-dimensional computer fluid dynamics coupled with a detailed chemical reaction calculation. The first study was conducted using a rapid compression and expansion machine (RCEM) equipped with a flow generation plate to create in-cylinder turbulent flow and with a control unit of in-cylinder wall temperature to create in-cylinder temperature distribution. The study assesses the effect of the turbulent flow and the temperature distribution on HCCI combustion. In the second study, the numerical simulation of HCCI combustion was conducted using large eddy simulation coupled with a detailed chemical reaction calculation. The study analyzes the interaction between in-cylinder turbulent flow and mixture distribution and HCCI combustion.
Technical Paper

The Effect of In-Cylinder Flow and Mixture Distributions on Combustion Characteristics in a HCCI Engine

It has been widely known that thermal and fuel stratifications of in-cylinder mixture are effective to reduce in-cylinder pressure rise rate during high load HCCI operations. In order to optimize a combustion chamber design and combustion control strategy for HCCI engines with wide operational range, it is important to know quantitatively the influence of the temperature and fuel concentration distributions on ignition and heat release characteristics. At the same time, it is important to know the influence of in-cylinder flow and turbulence on the temperature and fuel concentration distributions. In this study, a numerical simulation of HCCI combustion were conducted to investigate the effects of the in-cylinder flow and turbulence, and the distributions of temperature on ignition and combustion characteristics in HCCI combustion.