Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Comparison of an On-Board, Real-Time Electronic PM Sensor with Laboratory Instruments Using a 2009 Heavy-Duty Diesel Vehicle

2011-04-12
2011-01-0627
EmiSense Technologies, LLC (www.emisense.com) is commercializing its electronic particulate matter (PM) sensor that is based on technology developed at the University of Texas at Austin (UT). To demonstrate the capability of this sensor for real-time PM measurements and on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed to characterize the engine PM emissions and to compare with the PM sensor response. Computational fluid dynamics (CFD) modeling was performed to characterize the hydrodynamics of the sensor's housing and to develop an improved PM sensor housing with reproducible hydrodynamics and an internal baffle to minimize orientation effects. PM sensors with the improved housing were evaluated in the truck exhaust of a heavy duty (HD) diesel engine tested on-road and on a chassis dynamometer at the University of California, Riverside (UCR) using their Mobile Emissions Laboratory (MEL).
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Technical Paper

Spray and Atomization Characterization of a Micro-Variable Circular-Orifice (MVCO) Fuel Injector

2011-04-12
2011-01-0679
HCCI/PCCI combustion concepts have been demonstrated for both high brake thermal efficiency and low engine-out emissions. However, these advanced combustion concepts still could not be fully utilized partially due to the limitations of conventional fixed spray angle nozzle designs for issues related to wall wetting for early injections. The micro-variable circular orifice (MVCO) fuel injector provides variable spray angles, variable orifice areas, and variable spray patterns. The MVCO provides optimized spray patterns to minimize combustion chamber surface-wetting, oil dilution and emissions. Designed with a concise structure, MVCO can significantly extend the operation maps of high efficiency early HCCI/PCCI combustion, and enable optimization of a dual-mode HCCI/PCCI and Accelerated Diffusion Combustion (ADC) over full engine operating maps. The MVCO variable spray pattern characteristics are analyzed with high speed photographing.
Technical Paper

Dual Loop EGR in Retrofitted Heavy-Duty Diesel Application

2014-04-01
2014-01-1244
Dual loop EGR systems (having both a high pressure loop EGR and a low pressure loop EGR) have been successfully applied to multiple light-duty diesel engines to meet Tier 2 Bin 5 and Euro 5/6 emissions regulations [1, 2], including the 2009 model year VW Jetta 2.0TDI. Hyundai and Toyota also published their studies with dual loop EGR systems [3, 4]. More interest exists on the low pressure loop EGR effects on medium to heavy duty applications [5]. Since the duty cycles of light duty diesel and heavy duty diesel applications are very different, how to apply the dual loop EGR systems to heavy duty applications and understanding their limitations are less documented and published. As a specific type of heavy duty application, this paper studied the dual loop EGR effects on the retrofit applications of heavy duty diesel for delivery and drayage applications. The reduction of NOx emissions and the impact on fuel economy and controls are discussed.
Technical Paper

Design Details of the Compression Ignition Rotating Liner Engine. Reducing Piston Assembly Friction and Ring/Liner Wear in Heavy-Duty Diesel Engines

2012-09-24
2012-01-1963
The Rotating Liner Engine (RLE) is an engine design concept where the cylinder liner rotates in order to reduce piston assembly friction and liner/ring wear. The reduction is achieved by the elimination of the mixed and boundary lubrication regimes that occur near TDC. Prior engines for aircraft developed during WW2 with partly rotating liners (Sleeve Valve Engines or SVE) have exhibited reduction of bore wear by factor of 10 for high BMEP operation, which supports the elimination of mixed lubrication near the TDC area via liner rotation. Our prior research on rotating liner engines experimentally proved that the boundary/mixed components near TDC are indeed eliminated, and a high friction reduction was quantified compared to a baseline engine. The added friction required to rotate the liner is hydrodynamic via a modest sliding speed, and is thus much smaller than the mixed and boundary friction that is eliminated.
Technical Paper

Coastdown Coefficient Analysis of Heavy-Duty Vehicles and Application to the Examination of the Effects of Grade and Other Parameters on Fuel Consumption

2012-09-24
2012-01-2051
To perform coastdown tests on heavy-duty trucks, both long acceleration and coasting distances are required. It is very difficult to find long flat stretches of road to conduct these tests; for a Class 8 truck loaded to 80,000 lb, about 7 miles of road is needed to complete the coastdown tests. In the present study, a method for obtaining coastdown coefficients from data taken on a road of variable grade is presented. To this end, a computer code was written to provide a fast solution for the coastdown coefficients. Class 7 and Class 8 trucks were tested with three different weight configurations: empty, “cubed-out” (fully loaded but with a payload of moderate density), and “weighed-out” (loaded to the maximum permissible weight).
Technical Paper

Thermal Management of a Four-way Catalyst System with Alternative Combustions for Achieving Future Emissions Standard

2007-09-16
2007-24-0103
Four-way catalyst system consisting of diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and lean NOx trap (LNT) with alternative combustion such as low temperature combustion (LTC) and premixed controlled compression ignition (PCCI) is one of the effective ways to achieve the US Tier 2 Bin 5 and future European emissions for light duty diesel vehicles. However, thermal responses such as substrate temperature and temperature gradient of each catalyst component in the exhaust treatment system are different under different combustion modes and operation conditions. One exhaust treatment component's performance or durability can not be sacrificed for the sake of another. In this paper, thermal management strategies for exhaust treatment component temperature and temperature gradient by controlling lean and rich conditions of low temperature combustions as well as premixed controlled combustion, EGR rate and exhaust flow are demonstrated on a Renault G9T600 engine.
Technical Paper

Unregulated Exhaust Emissions from Alternate Diesel Combustion Modes

2006-10-16
2006-01-3307
Regulated and unregulated exhaust emissions (individual hydrocarbons, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), and nitro-polynuclear aromatic hydrocarbons (NPAH)) were characterized for the following alternate diesel combustion modes: premixed charge compression ignition (PCCI), and low-temperature combustion (LTC). PCCI and LTC were studied on a PSA light-duty high-speed diesel engine. Engine-out emissions of carbonyl compounds were significantly increased for all LTC modes and for PCCI-Lean conditions as compared to diesel operation; however, PCCI-Rich produced much lower carbonyl emissions than diesel operations. For PAH compounds, emissions were found to be substantially increased over baseline diesel operation for LTC-Lean, LTC-Rich, and PCCI-Lean conditions. PCCI-Rich operation, however, gave PAH emission rates comparable to baseline diesel operation.
Technical Paper

Methodologies to Control DPF Uncontrolled Regenerations

2006-04-03
2006-01-1090
Diesel particulate filters (DPF) have been shown to effectively reduce particulate emissions from diesel engines. However, uncontrolled DPF regeneration can easily damage the DPF. In this paper, three different types of uncontrolled DPF regeneration are defined. They are: Type A: Uncontrolled high initial exotherm at the start of DPF regeneration, Type B: “Runaway” or uncontrolled regeneration, which takes place when the engine goes to idle during normal DPF regeneration, and Type C: Uneven soot distribution causing excess thermal stress during normal DPF regeneration. In this paper, different control strategies are developed for each of the three types of uncontrolled DPF regenerations. These control strategies include SOF control, exhaust flow pattern improvement, as well as EGR control through intake throttling and A/F ratio control.
Technical Paper

Improved Passage Design for a Spark Plug Mounted Pressure Transducer

2007-04-16
2007-01-0652
Combustion chamber pressure measurement in engines via a passage is an old technique that is still widely used in engine research. This paper presents improved passage designs for an off-set electrode spark plug designed to accept a pressure transducer. The spark plug studied was the Champion model 304-063A. Two acoustic models were developed to compute the resonance characteristics. The new designs have a resonance frequency in a range higher than the fundamental frequency expected from knock so that the signal can be lowpass filtered to remove the resonance and not interfere with pressure signal components associated with combustion phenomena. Engine experiments verified the spark plug resonance behavior. For the baseline engine operating condition approximately 50 of 100 cycles had visible passage resonance in the measured pressure traces, at an average frequency of 8.03 kHz.
Journal Article

Investigation of In-cylinder NOx and PM Reduction with Delphi E3 Flexible Unit Injectors on a Heavy-duty Diesel Engine

2008-06-23
2008-01-1792
In-cylinder emission controls were the focus for diesel engines for many decades before the emergence of diesel aftertreatment. Even with modern aftertreatment, control of in-cylinder processes remains a key issue for developing diesel vehicles with low tailpipe emissions. A reduction in in-cylinder emissions makes aftertreatment more effective at lower cost with superior fuel economy. This paper describes a study focused on an in-cylinder combustion control approach using a Delphi E3 flexible fuel system to achieve low engine-out NOx and PM emissions. A 2003 model year Detroit Diesel Corporation Series 60 14L heady-duty diesel engine, modified to accept the Delphi E3 unit injectors, and ultra low sulfur fuel were used throughout this study. The process of achieving premixed low temperature combustion within the limited range of parameters of the stock ECU was investigated.
Technical Paper

Railplug Ignition Operating Characteristics and Performance:A Review

2007-07-23
2007-01-1832
The basic process of spark ignition in engines has changed little over the more than 100 years since its first application. The rapid evolution of several advanced engine concepts and the refinement of existing engine designs, especially applications of power boost technology, have led to a renewed interest in advanced spark ignition concepts. The increasingly large rates of in-cylinder dilution via EGR and ultra-lean operation, combined with increases in boost pressures are placing new demands on spark ignition systems. The challenge is to achieve strong and consistent ignition of the in-cylinder mixture in every cycle, to meet performance and emissions goals while maintaining or improving the durability of ignitor. The application of railplug ignition to some of these engine systems is seen as a potential alternative to conventional spark ignition systems that may lead to improved ignition performance.
Technical Paper

Further Development of an Electronic Particulate Matter Sensor and Its Application to Diesel Engine Transients

2008-04-14
2008-01-1065
This paper presents the latest developments in the design and performance of an electronic particulate matter (PM) sensor developed at The University of Texas at Austin (UT) and suitable, with further development, for applications in active engine control of PM emissions. The sensor detects the carbonaceous mass component of PM in the exhaust and has a time-resolution less than 20 (ms), allowing PM levels to be quantified for engine transients. Sample measurements made with the sensor in the exhaust of a single-cylinder light duty diesel engine are presented for both steady-state and transient operations: a steady-state correlation with gravimetric filter measurements is presented, and the sensor response to rapid increases in PM emission during engine transients is shown for several different tip-in (momentary increases in fuel delivery) conditions.
Technical Paper

Electronic Particulate Matter Sensor – Mechanisms and Application in a Modern Light-Duty Diesel Vehicle

2009-04-20
2009-01-0647
An electronic particulate matter sensor (EPMS) developed at the University of Texas was used to characterize exhaust gases from a single-cylinder diesel engine and a light-duty diesel vehicle. Measurements were made during transient tip-in events with multiple sensor configurations in the single-cylinder engine. The sensor was operated in two modes: one with the electric field energized, and the other with no electric field present. In each mode, different characteristic signals were produced in response to a tip-in event, highlighting the two primary mechanisms of sensor operation. The sensor responded to both the natural charge of the particulate matter (PM) emitted from the engine, and was also found to create a signal by charging neutral particles. The characteristics of the two mechanisms of operation are discussed as well as their implications on the placement and operation of the sensor.
Technical Paper

Development of the Texas Drayage Truck Cycle and Its Use to Determine the Effects of Low Rolling Resistance Tires on the NOX Emissions and Fuel Economy

2009-04-20
2009-01-0943
Trucks operating in inter-modal (drayage) operation in and around port and rail terminals, are responsible for a large proportion of the emissions of NOX, which are problematic for the air quality of the Houston and Dallas/Ft. Worth metro areas. A standard test cycle, called the Texas Dray Truck Cycle, was developed to represent the operation of heavy-duty diesel trucks in dray operations. The test cycle reflects the substantial time spent at idle (~45%) and the high intensity of the on-road portions. This test cycle was then used in the SAE J1321 test protocol to evaluate the effect on fuel consumption and NOX emissions of retrofitting dray trucks with light-weight, low-rolling resistance wide-single tires. In on-track testing, a reduction in fuel consumption of 8.7% was seen, and NOX emissions were reduced by 3.8% with the wide single tires compared to the conventional tires.
Technical Paper

The Texas Project, Part 4 - Final Results: Emissions and Fuel Economy of CNG and LPG Conversions of Light-Duty Vehicles

1998-10-19
982446
The Texas Project was a multi-year study of aftermarket conversions of a variety of light-duty vehicles to CNG or LPG. Emissions and fuel economy when using these fuels are compared to the results for the same vehicles operating on certification gasoline and Federal Phase 1 RFG. Since 1993, 1,040 tests were conducted on 10 models, totally 86 light-duty vehicles. The potential for each vehicle model/kit combination to attain LEV certification was assessed. Also, comparisons of emissions and fuel economy between converted vehicles when operating on gasoline and nominally identical un-converted gasoline control vehicles were analyzed. Additional evaluations were performed for a subfleet that was subjected to exhaust speciations for operation over the Federal Test Procedure cycle and also for off-cycle tests.
Technical Paper

The Texas Project, Part 5 - Economic Analysis: CNG and LPG Conversions of Light-Duty Vehicle Fleets

1998-10-19
982447
The Texas Project was a multi-year study of aftermarket conversions of a variety of light-duty vehicles to CNG or LPG. One aspect of this project was to examine the factors that influence the economics of fleet conversions to these alternative fuels. The present analysis did not include longer-term effects (such as possible increases in exhaust system life or increases in tire wear). Additionally, assumptions were required to estimate the costs of repairs to the alternative fuel system and engine. Other factors considered include conversion cost, fuel prices, annual alternative fuel tax (as applied for the state of Texas), annual miles accumulated, and the percent miles traveled while using the alternative fuel for dual fuel conversions.
Technical Paper

Further Development of an On-Board Distillation System for Generating a Highly Volatile Cold-Start Fuel

2005-04-11
2005-01-0233
The On-Board Distillation System (OBDS) extracts, from gasoline, a highly volatile crank fuel that enables simultaneous reduction of start-up fuel enrichment and significant ignition timing retard during cold-starting. In a previous paper we reported reductions in catalyst light-off time of >50% and THC emissions reductions >50% over Phase I of the FTP drive cycle. The research presented herein is a further development of the OBDS concept. For this work, OBDS was improved to yield higher-quality start-up fuel. The PCM calibration was changed as well, in order to improve the response to intake manifold pressure transients. The test vehicle was tested over the 3-phase FTP, with exhaust gases speciated to determine NMOG and exhaust toxics emissions. Also, the effectiveness of OBDS at generating a suitable starting fuel from a high driveability index test gasoline was evaluated.
Technical Paper

Voltage, and Energy Deposition Characteristics of Spark Ignition Systems

2005-04-11
2005-01-0231
Time-resolved current and voltage measurements for an inductive automotive spark system were made. Also presented are measurements of the total energy delivered to the spark gap. The measurements were made in air for a range of pressures from 1-18 atm, at ambient temperatures. The measured voltage and current characteristics were found to be a function of many ignition parameters; some of these include: spark gap distance, internal resistance of the spark plug and high tension wire, and pressure. The voltages presented were measured either at the top of the spark plug or at the spark gap. The measurements were made at different time resolutions to more accurately resolve the voltage and current behavior throughout the discharge process. This was necessary because the breakdown event occurs on a time scale much shorter than the arc and glow phases.
Technical Paper

Analysis of Factors that Affect the Performance of Railplugs

2005-04-11
2005-01-0252
As natural gas engines are designed to operate leaner and with increased boost pressure, durability of the spark plugs becomes problematic. Among the various new ignition devices that have been considered to solve some of the problems facing spark plugs, railplugs appear to hold clear advantages in some areas. There are two types of railplugs: coaxial rail and parallel rail. This paper reports the results of an experimental study of various parameters that affect the performance of parallel railplugs. Their performance was quantified by the distance that the arc traveled along the rails from the initiation point. Travel along the rails is thought to be an important performance metric because rail-travel limits excessive local wear and produces a distributed ignition source which can potentially reduce mixture inhomogeneity induced ignition problems.
X